Generation of artificial neural networks models in anticancer study

Detalhes bibliográficos
Autor(a) principal: Sousa, Inês J.
Data de Publicação: 2013
Outros Autores: Padrón, José M., Fernandes, Miguel X.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.13/5026
Resumo: Artificial neural networks (ANNs) have several applications; one of them is the prediction of biological activity. Here, ANNs were applied to a set of 32 compounds with anticancer activity assayed experimentally against two cancer cell lines (A2780 and T-47D). Using training and test sets, the obtained correlation coefficients between experimental and calculated values of activity, for A2780, were 0.804 and 0.829, respectively, and for T-47D, we got 0.820 for the training set and 0.927 for the test set. Com paring multiple linear regression and ANN models, the latter were better suited in establishing relationships between compounds’ structure and their anticancer activity.
id RCAP_bc5018e1802e963ede4708e77ee08d9e
oai_identifier_str oai:digituma.uma.pt:10400.13/5026
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Generation of artificial neural networks models in anticancer studyBackpropagation algorithmCorrelation coefficientsHeuristicsLearning algorithmsMachine learningNeural network modelsNonlinear modelsPrediction methodsRadial base function network.Faculdade de Ciências Exatas e da EngenhariaArtificial neural networks (ANNs) have several applications; one of them is the prediction of biological activity. Here, ANNs were applied to a set of 32 compounds with anticancer activity assayed experimentally against two cancer cell lines (A2780 and T-47D). Using training and test sets, the obtained correlation coefficients between experimental and calculated values of activity, for A2780, were 0.804 and 0.829, respectively, and for T-47D, we got 0.820 for the training set and 0.927 for the test set. Com paring multiple linear regression and ANN models, the latter were better suited in establishing relationships between compounds’ structure and their anticancer activity.SpringerDigitUMaSousa, Inês J.Padrón, José M.Fernandes, Miguel X.2023-02-10T14:31:39Z20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.13/5026engSousa, I. J., Padrón, J. M., & Fernandes, M. X. (2013). Generation of artificial neural networks models in anticancer study. Neural Computing and Applications, 23, 577-582.10.1007/s00521-013-1404-0info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-12T05:24:11Zoai:digituma.uma.pt:10400.13/5026Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:46:30.130711Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Generation of artificial neural networks models in anticancer study
title Generation of artificial neural networks models in anticancer study
spellingShingle Generation of artificial neural networks models in anticancer study
Sousa, Inês J.
Backpropagation algorithm
Correlation coefficients
Heuristics
Learning algorithms
Machine learning
Neural network models
Nonlinear models
Prediction methods
Radial base function network
.
Faculdade de Ciências Exatas e da Engenharia
title_short Generation of artificial neural networks models in anticancer study
title_full Generation of artificial neural networks models in anticancer study
title_fullStr Generation of artificial neural networks models in anticancer study
title_full_unstemmed Generation of artificial neural networks models in anticancer study
title_sort Generation of artificial neural networks models in anticancer study
author Sousa, Inês J.
author_facet Sousa, Inês J.
Padrón, José M.
Fernandes, Miguel X.
author_role author
author2 Padrón, José M.
Fernandes, Miguel X.
author2_role author
author
dc.contributor.none.fl_str_mv DigitUMa
dc.contributor.author.fl_str_mv Sousa, Inês J.
Padrón, José M.
Fernandes, Miguel X.
dc.subject.por.fl_str_mv Backpropagation algorithm
Correlation coefficients
Heuristics
Learning algorithms
Machine learning
Neural network models
Nonlinear models
Prediction methods
Radial base function network
.
Faculdade de Ciências Exatas e da Engenharia
topic Backpropagation algorithm
Correlation coefficients
Heuristics
Learning algorithms
Machine learning
Neural network models
Nonlinear models
Prediction methods
Radial base function network
.
Faculdade de Ciências Exatas e da Engenharia
description Artificial neural networks (ANNs) have several applications; one of them is the prediction of biological activity. Here, ANNs were applied to a set of 32 compounds with anticancer activity assayed experimentally against two cancer cell lines (A2780 and T-47D). Using training and test sets, the obtained correlation coefficients between experimental and calculated values of activity, for A2780, were 0.804 and 0.829, respectively, and for T-47D, we got 0.820 for the training set and 0.927 for the test set. Com paring multiple linear regression and ANN models, the latter were better suited in establishing relationships between compounds’ structure and their anticancer activity.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
2023-02-10T14:31:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.13/5026
url http://hdl.handle.net/10400.13/5026
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Sousa, I. J., Padrón, J. M., & Fernandes, M. X. (2013). Generation of artificial neural networks models in anticancer study. Neural Computing and Applications, 23, 577-582.
10.1007/s00521-013-1404-0
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130936464375808