Generation of artificial neural networks models in anticancer study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.13/5026 |
Resumo: | Artificial neural networks (ANNs) have several applications; one of them is the prediction of biological activity. Here, ANNs were applied to a set of 32 compounds with anticancer activity assayed experimentally against two cancer cell lines (A2780 and T-47D). Using training and test sets, the obtained correlation coefficients between experimental and calculated values of activity, for A2780, were 0.804 and 0.829, respectively, and for T-47D, we got 0.820 for the training set and 0.927 for the test set. Com paring multiple linear regression and ANN models, the latter were better suited in establishing relationships between compounds’ structure and their anticancer activity. |
id |
RCAP_bc5018e1802e963ede4708e77ee08d9e |
---|---|
oai_identifier_str |
oai:digituma.uma.pt:10400.13/5026 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Generation of artificial neural networks models in anticancer studyBackpropagation algorithmCorrelation coefficientsHeuristicsLearning algorithmsMachine learningNeural network modelsNonlinear modelsPrediction methodsRadial base function network.Faculdade de Ciências Exatas e da EngenhariaArtificial neural networks (ANNs) have several applications; one of them is the prediction of biological activity. Here, ANNs were applied to a set of 32 compounds with anticancer activity assayed experimentally against two cancer cell lines (A2780 and T-47D). Using training and test sets, the obtained correlation coefficients between experimental and calculated values of activity, for A2780, were 0.804 and 0.829, respectively, and for T-47D, we got 0.820 for the training set and 0.927 for the test set. Com paring multiple linear regression and ANN models, the latter were better suited in establishing relationships between compounds’ structure and their anticancer activity.SpringerDigitUMaSousa, Inês J.Padrón, José M.Fernandes, Miguel X.2023-02-10T14:31:39Z20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.13/5026engSousa, I. J., Padrón, J. M., & Fernandes, M. X. (2013). Generation of artificial neural networks models in anticancer study. Neural Computing and Applications, 23, 577-582.10.1007/s00521-013-1404-0info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-12T05:24:11Zoai:digituma.uma.pt:10400.13/5026Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:46:30.130711Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Generation of artificial neural networks models in anticancer study |
title |
Generation of artificial neural networks models in anticancer study |
spellingShingle |
Generation of artificial neural networks models in anticancer study Sousa, Inês J. Backpropagation algorithm Correlation coefficients Heuristics Learning algorithms Machine learning Neural network models Nonlinear models Prediction methods Radial base function network . Faculdade de Ciências Exatas e da Engenharia |
title_short |
Generation of artificial neural networks models in anticancer study |
title_full |
Generation of artificial neural networks models in anticancer study |
title_fullStr |
Generation of artificial neural networks models in anticancer study |
title_full_unstemmed |
Generation of artificial neural networks models in anticancer study |
title_sort |
Generation of artificial neural networks models in anticancer study |
author |
Sousa, Inês J. |
author_facet |
Sousa, Inês J. Padrón, José M. Fernandes, Miguel X. |
author_role |
author |
author2 |
Padrón, José M. Fernandes, Miguel X. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
DigitUMa |
dc.contributor.author.fl_str_mv |
Sousa, Inês J. Padrón, José M. Fernandes, Miguel X. |
dc.subject.por.fl_str_mv |
Backpropagation algorithm Correlation coefficients Heuristics Learning algorithms Machine learning Neural network models Nonlinear models Prediction methods Radial base function network . Faculdade de Ciências Exatas e da Engenharia |
topic |
Backpropagation algorithm Correlation coefficients Heuristics Learning algorithms Machine learning Neural network models Nonlinear models Prediction methods Radial base function network . Faculdade de Ciências Exatas e da Engenharia |
description |
Artificial neural networks (ANNs) have several applications; one of them is the prediction of biological activity. Here, ANNs were applied to a set of 32 compounds with anticancer activity assayed experimentally against two cancer cell lines (A2780 and T-47D). Using training and test sets, the obtained correlation coefficients between experimental and calculated values of activity, for A2780, were 0.804 and 0.829, respectively, and for T-47D, we got 0.820 for the training set and 0.927 for the test set. Com paring multiple linear regression and ANN models, the latter were better suited in establishing relationships between compounds’ structure and their anticancer activity. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z 2023-02-10T14:31:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.13/5026 |
url |
http://hdl.handle.net/10400.13/5026 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sousa, I. J., Padrón, J. M., & Fernandes, M. X. (2013). Generation of artificial neural networks models in anticancer study. Neural Computing and Applications, 23, 577-582. 10.1007/s00521-013-1404-0 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130936464375808 |