Computing Intelligent in Circuit Synthesis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/13461 |
Resumo: | This paper is devoted to the synthesis of combinational logic circuits through computacional intelligence or, more precisely, using evolutionary algorithms, the Genetic and the memetic ALgorithm (GAs, MAs) and one swarm intelligence algorithm, the Particle Swarm Optimization (PSO). GAs are optimization and search techniques based on the principles os genetics and natural selection. MAs are evolutionary algorithms that include a stage of individual optimization as part of its search algorithm that starts with a population-based search algorithm that starts with a population of random solutions called particles. This paper presents the results for digital circuits design using the three above algorithms. The results show the statistical characteristics of this algorithms with respect to the number of generatons required to archieve the solutions. The article analyzes also a new fitness, function that includes an error discontinuity measure, which demonstrated to improved significantly the performance of the algorithm. |
id |
RCAP_bc50fc00a1bcc2c0a1e19b046d15da30 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/13461 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Computing Intelligent in Circuit SynthesisComputational intelligenceEvolutionary algorithmsSwarm intelligenceLogic circuits designThis paper is devoted to the synthesis of combinational logic circuits through computacional intelligence or, more precisely, using evolutionary algorithms, the Genetic and the memetic ALgorithm (GAs, MAs) and one swarm intelligence algorithm, the Particle Swarm Optimization (PSO). GAs are optimization and search techniques based on the principles os genetics and natural selection. MAs are evolutionary algorithms that include a stage of individual optimization as part of its search algorithm that starts with a population-based search algorithm that starts with a population of random solutions called particles. This paper presents the results for digital circuits design using the three above algorithms. The results show the statistical characteristics of this algorithms with respect to the number of generatons required to archieve the solutions. The article analyzes also a new fitness, function that includes an error discontinuity measure, which demonstrated to improved significantly the performance of the algorithm.Repositório Científico do Instituto Politécnico do PortoReis, CecíliaTenreiro Machado, J. A.2019-04-08T14:09:24Z20072007-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/13461enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:49:00Zoai:recipp.ipp.pt:10400.22/13461Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:28:43.827680Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Computing Intelligent in Circuit Synthesis |
title |
Computing Intelligent in Circuit Synthesis |
spellingShingle |
Computing Intelligent in Circuit Synthesis Reis, Cecília Computational intelligence Evolutionary algorithms Swarm intelligence Logic circuits design |
title_short |
Computing Intelligent in Circuit Synthesis |
title_full |
Computing Intelligent in Circuit Synthesis |
title_fullStr |
Computing Intelligent in Circuit Synthesis |
title_full_unstemmed |
Computing Intelligent in Circuit Synthesis |
title_sort |
Computing Intelligent in Circuit Synthesis |
author |
Reis, Cecília |
author_facet |
Reis, Cecília Tenreiro Machado, J. A. |
author_role |
author |
author2 |
Tenreiro Machado, J. A. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Reis, Cecília Tenreiro Machado, J. A. |
dc.subject.por.fl_str_mv |
Computational intelligence Evolutionary algorithms Swarm intelligence Logic circuits design |
topic |
Computational intelligence Evolutionary algorithms Swarm intelligence Logic circuits design |
description |
This paper is devoted to the synthesis of combinational logic circuits through computacional intelligence or, more precisely, using evolutionary algorithms, the Genetic and the memetic ALgorithm (GAs, MAs) and one swarm intelligence algorithm, the Particle Swarm Optimization (PSO). GAs are optimization and search techniques based on the principles os genetics and natural selection. MAs are evolutionary algorithms that include a stage of individual optimization as part of its search algorithm that starts with a population-based search algorithm that starts with a population of random solutions called particles. This paper presents the results for digital circuits design using the three above algorithms. The results show the statistical characteristics of this algorithms with respect to the number of generatons required to archieve the solutions. The article analyzes also a new fitness, function that includes an error discontinuity measure, which demonstrated to improved significantly the performance of the algorithm. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 2007-01-01T00:00:00Z 2019-04-08T14:09:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/13461 |
url |
http://hdl.handle.net/10400.22/13461 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131381934063616 |