Collaborative Improvement of Smart Manufacturing using Privacy-Preserving Federated Learning

Detalhes bibliográficos
Autor(a) principal: Costa, Alexandre Miguel Manta da
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/153177
Resumo: Nowadays, data sharing among different sources is is very challenging in the manufac- turing domain, mainly due to industry competition, complicated bureaucratic processes, and privacy and security concerns. Centralized Machine Learning (ML) poses an essential aspect in several industries, including smart manufacturing. However this approach may lead to several issues regarding security and performance. In response to these problems, Federated Learning (FL) was created. FL is an innova- tive and decentralized approach to ML, focused on collaboration and data privacy. In this approach, data is kept in each source where it is trained locally, and only model weights or gradients are shared to create a global model. Although several works have already been implemented towards this problem, there are still many unresolved issues concerning the application of FL frameworks in smart manufacturing scenarios. Among the several issues found in the analysed works it is important to emphasize the disregard facing industry 4.0 architectures, strategies and the unavailability to improve those frameworks further. This work aims to build a FL framework for smart manufacturing with specific con- cerns in privacy and applicability in industrial scenarios. The main focus of this frame- work is to facilitate a collaborative approach in the application of ML to manufacturing by enabling the knowledge sharing for this purpose and taking privacy as a special concern. In addition, the implementation and testing of privacy-preserving algorithms, while im- proving the framework for industrial scenarios are emphasized. A modular approach is chosen to create a framework adapted to various industrial cases by implementing several nodes that focus on specific aspects of data collection, data treatment, connection with the FL system, and ML model management. The results revealed a competitive model performance of the framework compared to the centralized approach while keeping data at each source, protecting its privacy. The implemented framework also proved to be compliant with the IEEE Std 3652.1-2020 standard guidelines, attaining the established requirement levels.
id RCAP_bc6e1f4f7f680c04c64997e29264689e
oai_identifier_str oai:run.unl.pt:10362/153177
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Collaborative Improvement of Smart Manufacturing using Privacy-Preserving Federated LearningFederated LearningPrivacy-Preserving Federated LearningSmart ManufacturingFrameworkDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaNowadays, data sharing among different sources is is very challenging in the manufac- turing domain, mainly due to industry competition, complicated bureaucratic processes, and privacy and security concerns. Centralized Machine Learning (ML) poses an essential aspect in several industries, including smart manufacturing. However this approach may lead to several issues regarding security and performance. In response to these problems, Federated Learning (FL) was created. FL is an innova- tive and decentralized approach to ML, focused on collaboration and data privacy. In this approach, data is kept in each source where it is trained locally, and only model weights or gradients are shared to create a global model. Although several works have already been implemented towards this problem, there are still many unresolved issues concerning the application of FL frameworks in smart manufacturing scenarios. Among the several issues found in the analysed works it is important to emphasize the disregard facing industry 4.0 architectures, strategies and the unavailability to improve those frameworks further. This work aims to build a FL framework for smart manufacturing with specific con- cerns in privacy and applicability in industrial scenarios. The main focus of this frame- work is to facilitate a collaborative approach in the application of ML to manufacturing by enabling the knowledge sharing for this purpose and taking privacy as a special concern. In addition, the implementation and testing of privacy-preserving algorithms, while im- proving the framework for industrial scenarios are emphasized. A modular approach is chosen to create a framework adapted to various industrial cases by implementing several nodes that focus on specific aspects of data collection, data treatment, connection with the FL system, and ML model management. The results revealed a competitive model performance of the framework compared to the centralized approach while keeping data at each source, protecting its privacy. The implemented framework also proved to be compliant with the IEEE Std 3652.1-2020 standard guidelines, attaining the established requirement levels.Atualmente, a partilha de dados entre diferentes fontes é um grande desafio no domí- nio da manufatura, principalmente devido à concorrência da indústria, processos burocrá- ticos complicados e preocupações de privacidade e segurança. O Machine Learning (ML) impõe-se como um aspeto essencial em várias indústrias, incluindo a manufatura inteli- gente. Contudo, esta abordagem pode levantar várias questões relativamente à segurança e ao desempenho. Em resposta a estes problemas, foi criado o Federated Learning (FL). FL é uma aborda- gem inovadora e descentralizada de ML, centrada na colaboração e privacidade de dados. Nesta abordagem, os dados são mantidos em cada fonte, onde são treinados localmente, e apenas os pesos ou gradientes dos modelos são partilhados para criar um modelo global. Embora vários trabalhos já tenham sido implementados visando esta temática, ainda existem muitas questões por resolver relativas à aplicação de frameworks de FL em ce- nários de manufatura inteligente. Entre as várias questões encontradas na literatura analisada, é importante enfatizar a desconsideração pelas arquiteturas e estratégias da indústria 4.0 e a indisponibilidade para melhorar essas frameworks. Este trabalho visa construir uma framework de FL aplicada à manufatura inteligente com preocupações específicas no que toca a matérias de privacidade e aplicabilidade em cenários industriais. O principal objectivo desta framework é facilitar uma abordagem colaborativa na aplicação de ML ao fabrico, permitindo a partilha de conhecimentos para este fim e enfatizando a preocupação na privacidade dos utilizadores. Uma abordagem modular foi escolhida para criar uma framework adaptada a vários casos industriais atra- vés da implementação de vários nós que se concentram em aspetos específicos da recolha de dados, tratamento de dados, ligação com o sistema de FL e gestão do modelo de ML. Os resultados revelaram um desempenho competitivo do modelo em relação a uma abordagem centralizada, mantendo os dados em cada fonte e protegendo a sua privaci- dade. A framework implementada também provou estar em conformidade com a norma IEEE Std 3652.1-2020, atingindo os níveis de exigência estabelecidos.Peres, RicardoOliveira, JoséRUNCosta, Alexandre Miguel Manta da2023-05-26T08:47:28Z2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/153177enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:35:45Zoai:run.unl.pt:10362/153177Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:55:12.153944Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Collaborative Improvement of Smart Manufacturing using Privacy-Preserving Federated Learning
title Collaborative Improvement of Smart Manufacturing using Privacy-Preserving Federated Learning
spellingShingle Collaborative Improvement of Smart Manufacturing using Privacy-Preserving Federated Learning
Costa, Alexandre Miguel Manta da
Federated Learning
Privacy-Preserving Federated Learning
Smart Manufacturing
Framework
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Collaborative Improvement of Smart Manufacturing using Privacy-Preserving Federated Learning
title_full Collaborative Improvement of Smart Manufacturing using Privacy-Preserving Federated Learning
title_fullStr Collaborative Improvement of Smart Manufacturing using Privacy-Preserving Federated Learning
title_full_unstemmed Collaborative Improvement of Smart Manufacturing using Privacy-Preserving Federated Learning
title_sort Collaborative Improvement of Smart Manufacturing using Privacy-Preserving Federated Learning
author Costa, Alexandre Miguel Manta da
author_facet Costa, Alexandre Miguel Manta da
author_role author
dc.contributor.none.fl_str_mv Peres, Ricardo
Oliveira, José
RUN
dc.contributor.author.fl_str_mv Costa, Alexandre Miguel Manta da
dc.subject.por.fl_str_mv Federated Learning
Privacy-Preserving Federated Learning
Smart Manufacturing
Framework
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Federated Learning
Privacy-Preserving Federated Learning
Smart Manufacturing
Framework
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Nowadays, data sharing among different sources is is very challenging in the manufac- turing domain, mainly due to industry competition, complicated bureaucratic processes, and privacy and security concerns. Centralized Machine Learning (ML) poses an essential aspect in several industries, including smart manufacturing. However this approach may lead to several issues regarding security and performance. In response to these problems, Federated Learning (FL) was created. FL is an innova- tive and decentralized approach to ML, focused on collaboration and data privacy. In this approach, data is kept in each source where it is trained locally, and only model weights or gradients are shared to create a global model. Although several works have already been implemented towards this problem, there are still many unresolved issues concerning the application of FL frameworks in smart manufacturing scenarios. Among the several issues found in the analysed works it is important to emphasize the disregard facing industry 4.0 architectures, strategies and the unavailability to improve those frameworks further. This work aims to build a FL framework for smart manufacturing with specific con- cerns in privacy and applicability in industrial scenarios. The main focus of this frame- work is to facilitate a collaborative approach in the application of ML to manufacturing by enabling the knowledge sharing for this purpose and taking privacy as a special concern. In addition, the implementation and testing of privacy-preserving algorithms, while im- proving the framework for industrial scenarios are emphasized. A modular approach is chosen to create a framework adapted to various industrial cases by implementing several nodes that focus on specific aspects of data collection, data treatment, connection with the FL system, and ML model management. The results revealed a competitive model performance of the framework compared to the centralized approach while keeping data at each source, protecting its privacy. The implemented framework also proved to be compliant with the IEEE Std 3652.1-2020 standard guidelines, attaining the established requirement levels.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
2022-12-01T00:00:00Z
2023-05-26T08:47:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/153177
url http://hdl.handle.net/10362/153177
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138139507261440