Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms

Detalhes bibliográficos
Autor(a) principal: Torres, Pedro
Data de Publicação: 2022
Outros Autores: Correia, Luis, Ramalho, Armando
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.11/8113
Resumo: This paper presents an approach for automatic anomaly detection through vibration analysis based on machine learning algorithms.The study focuses on induction motors in a predictive maintenance context, but can be applied to other domains. Vibration analysis is an important diagnostic tool in industrial data analysis to predict anomaliescaused by equipment defects or in its use, allowing to increase its lifetime.It is not a new technique and is widely used in the industry, however withthe Industry 4.0 paradigm and the need to digitize any process, it gainsrelevance to automatic fault detection. The Isolation Forest algorithm isimplemented to detect anomalies in vibration datasets measured in anexperimental apparatus composed of an induction motor and a coupling system with shaft alignment/misalignment capabilities. The results showthat it is possible to detect anomalies automatically with a high level ofprecision and accuracy.
id RCAP_bca306b1b925ce2b617972017b5419f1
oai_identifier_str oai:repositorio.ipcb.pt:10400.11/8113
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Automatic anomaly detection in vibration analysis based on Machine Learning AlgorithmsIndustry 4.0Anomaly detectionIsolation forestVibration analysisBigMLThis paper presents an approach for automatic anomaly detection through vibration analysis based on machine learning algorithms.The study focuses on induction motors in a predictive maintenance context, but can be applied to other domains. Vibration analysis is an important diagnostic tool in industrial data analysis to predict anomaliescaused by equipment defects or in its use, allowing to increase its lifetime.It is not a new technique and is widely used in the industry, however withthe Industry 4.0 paradigm and the need to digitize any process, it gainsrelevance to automatic fault detection. The Isolation Forest algorithm isimplemented to detect anomalies in vibration datasets measured in anexperimental apparatus composed of an induction motor and a coupling system with shaft alignment/misalignment capabilities. The results showthat it is possible to detect anomalies automatically with a high level ofprecision and accuracy.Repositório Científico do Instituto Politécnico de Castelo BrancoTorres, PedroCorreia, LuisRamalho, Armando2022-09-12T09:46:51Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.11/8113eng978-303109384-52195435610.1007/978-3-031-09385-2_2info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-01-16T11:49:24Zoai:repositorio.ipcb.pt:10400.11/8113Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:38:32.868932Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms
title Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms
spellingShingle Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms
Torres, Pedro
Industry 4.0
Anomaly detection
Isolation forest
Vibration analysis
BigML
title_short Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms
title_full Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms
title_fullStr Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms
title_full_unstemmed Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms
title_sort Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms
author Torres, Pedro
author_facet Torres, Pedro
Correia, Luis
Ramalho, Armando
author_role author
author2 Correia, Luis
Ramalho, Armando
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico de Castelo Branco
dc.contributor.author.fl_str_mv Torres, Pedro
Correia, Luis
Ramalho, Armando
dc.subject.por.fl_str_mv Industry 4.0
Anomaly detection
Isolation forest
Vibration analysis
BigML
topic Industry 4.0
Anomaly detection
Isolation forest
Vibration analysis
BigML
description This paper presents an approach for automatic anomaly detection through vibration analysis based on machine learning algorithms.The study focuses on induction motors in a predictive maintenance context, but can be applied to other domains. Vibration analysis is an important diagnostic tool in industrial data analysis to predict anomaliescaused by equipment defects or in its use, allowing to increase its lifetime.It is not a new technique and is widely used in the industry, however withthe Industry 4.0 paradigm and the need to digitize any process, it gainsrelevance to automatic fault detection. The Isolation Forest algorithm isimplemented to detect anomalies in vibration datasets measured in anexperimental apparatus composed of an induction motor and a coupling system with shaft alignment/misalignment capabilities. The results showthat it is possible to detect anomalies automatically with a high level ofprecision and accuracy.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-12T09:46:51Z
2022
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.11/8113
url http://hdl.handle.net/10400.11/8113
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-303109384-5
21954356
10.1007/978-3-031-09385-2_2
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130849491288064