Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.11/8113 |
Resumo: | This paper presents an approach for automatic anomaly detection through vibration analysis based on machine learning algorithms.The study focuses on induction motors in a predictive maintenance context, but can be applied to other domains. Vibration analysis is an important diagnostic tool in industrial data analysis to predict anomaliescaused by equipment defects or in its use, allowing to increase its lifetime.It is not a new technique and is widely used in the industry, however withthe Industry 4.0 paradigm and the need to digitize any process, it gainsrelevance to automatic fault detection. The Isolation Forest algorithm isimplemented to detect anomalies in vibration datasets measured in anexperimental apparatus composed of an induction motor and a coupling system with shaft alignment/misalignment capabilities. The results showthat it is possible to detect anomalies automatically with a high level ofprecision and accuracy. |
id |
RCAP_bca306b1b925ce2b617972017b5419f1 |
---|---|
oai_identifier_str |
oai:repositorio.ipcb.pt:10400.11/8113 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Automatic anomaly detection in vibration analysis based on Machine Learning AlgorithmsIndustry 4.0Anomaly detectionIsolation forestVibration analysisBigMLThis paper presents an approach for automatic anomaly detection through vibration analysis based on machine learning algorithms.The study focuses on induction motors in a predictive maintenance context, but can be applied to other domains. Vibration analysis is an important diagnostic tool in industrial data analysis to predict anomaliescaused by equipment defects or in its use, allowing to increase its lifetime.It is not a new technique and is widely used in the industry, however withthe Industry 4.0 paradigm and the need to digitize any process, it gainsrelevance to automatic fault detection. The Isolation Forest algorithm isimplemented to detect anomalies in vibration datasets measured in anexperimental apparatus composed of an induction motor and a coupling system with shaft alignment/misalignment capabilities. The results showthat it is possible to detect anomalies automatically with a high level ofprecision and accuracy.Repositório Científico do Instituto Politécnico de Castelo BrancoTorres, PedroCorreia, LuisRamalho, Armando2022-09-12T09:46:51Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.11/8113eng978-303109384-52195435610.1007/978-3-031-09385-2_2info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-01-16T11:49:24Zoai:repositorio.ipcb.pt:10400.11/8113Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:38:32.868932Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms |
title |
Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms |
spellingShingle |
Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms Torres, Pedro Industry 4.0 Anomaly detection Isolation forest Vibration analysis BigML |
title_short |
Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms |
title_full |
Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms |
title_fullStr |
Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms |
title_full_unstemmed |
Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms |
title_sort |
Automatic anomaly detection in vibration analysis based on Machine Learning Algorithms |
author |
Torres, Pedro |
author_facet |
Torres, Pedro Correia, Luis Ramalho, Armando |
author_role |
author |
author2 |
Correia, Luis Ramalho, Armando |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico de Castelo Branco |
dc.contributor.author.fl_str_mv |
Torres, Pedro Correia, Luis Ramalho, Armando |
dc.subject.por.fl_str_mv |
Industry 4.0 Anomaly detection Isolation forest Vibration analysis BigML |
topic |
Industry 4.0 Anomaly detection Isolation forest Vibration analysis BigML |
description |
This paper presents an approach for automatic anomaly detection through vibration analysis based on machine learning algorithms.The study focuses on induction motors in a predictive maintenance context, but can be applied to other domains. Vibration analysis is an important diagnostic tool in industrial data analysis to predict anomaliescaused by equipment defects or in its use, allowing to increase its lifetime.It is not a new technique and is widely used in the industry, however withthe Industry 4.0 paradigm and the need to digitize any process, it gainsrelevance to automatic fault detection. The Isolation Forest algorithm isimplemented to detect anomalies in vibration datasets measured in anexperimental apparatus composed of an induction motor and a coupling system with shaft alignment/misalignment capabilities. The results showthat it is possible to detect anomalies automatically with a high level ofprecision and accuracy. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-12T09:46:51Z 2022 2022-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.11/8113 |
url |
http://hdl.handle.net/10400.11/8113 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-303109384-5 21954356 10.1007/978-3-031-09385-2_2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130849491288064 |