Chitosan and hydroxyapatite based biomaterials to circumvent periprosthetic joint infections
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/32358 |
Resumo: | Every year, worldwide, millions of people suffering from joint pain undergo joint replace-ment. For most patients, joint arthroplasty reduces pain and improve function, though a small fraction will experience implant failure. One of the main reasons includes prosthetic joint infection (PJI), involving the prosthesis and adjacent tissues. Few microorganisms (MO) are required to inocu-late the implant, resulting in the formation of a biofilm on its surface. Standard treatment includes not only removal of the infected prosthesis but also the elimination of necrotic bone fragments, local and/or systemic administration of antibiotics, and revision arthroplasty with a new prosthesis, immediately after the infection is cleared. Therefore, an alternative to the conventional therapeutics would be the incorporation of natural antimicrobial compounds into the prosthesis. Chitosan (Ch) is a potential valuable biomaterial presenting properties such as biocompatibility, biodegradability, low immunogenicity, wound healing ability, antimicrobial activity, and anti-inflammatory potential. Regarding its antimicrobial activity, Gram-negative and Gram-positive bacteria, as well as fungi are highly susceptible to chitosan. Calcium phosphate (CaP)-based materials are commonly utilized in orthopedic and dentistry for their excellent biocompatibility and bioactivity, particularly in the establishment of cohesive bone bonding that yields effective and rapid osteointegration. At present, the majority of CaP-based materials are synthetic, which conducts to the depletion of the natural resources of phosphorous in the future due to the extensive use of phosphate. CaP in the form of hydroxyapatite (HAp) may be extracted from natural sources as fish bones or scales, which are by-products of the fish food industry. Thus, this review aims to enlighten the fundamental characteristics of Ch and HAp biomaterials which makes them attractive to PJI prevention and bone regeneration, summarizing relevant studies with these biomaterials to the field. |
id |
RCAP_bd32afb7e07e8494657166f14513b27f |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/32358 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Chitosan and hydroxyapatite based biomaterials to circumvent periprosthetic joint infectionsAntimicrobialBiomaterialsChitosanHydroxyapatiteOste-oregenerationPeriprosthetic joint infectionEvery year, worldwide, millions of people suffering from joint pain undergo joint replace-ment. For most patients, joint arthroplasty reduces pain and improve function, though a small fraction will experience implant failure. One of the main reasons includes prosthetic joint infection (PJI), involving the prosthesis and adjacent tissues. Few microorganisms (MO) are required to inocu-late the implant, resulting in the formation of a biofilm on its surface. Standard treatment includes not only removal of the infected prosthesis but also the elimination of necrotic bone fragments, local and/or systemic administration of antibiotics, and revision arthroplasty with a new prosthesis, immediately after the infection is cleared. Therefore, an alternative to the conventional therapeutics would be the incorporation of natural antimicrobial compounds into the prosthesis. Chitosan (Ch) is a potential valuable biomaterial presenting properties such as biocompatibility, biodegradability, low immunogenicity, wound healing ability, antimicrobial activity, and anti-inflammatory potential. Regarding its antimicrobial activity, Gram-negative and Gram-positive bacteria, as well as fungi are highly susceptible to chitosan. Calcium phosphate (CaP)-based materials are commonly utilized in orthopedic and dentistry for their excellent biocompatibility and bioactivity, particularly in the establishment of cohesive bone bonding that yields effective and rapid osteointegration. At present, the majority of CaP-based materials are synthetic, which conducts to the depletion of the natural resources of phosphorous in the future due to the extensive use of phosphate. CaP in the form of hydroxyapatite (HAp) may be extracted from natural sources as fish bones or scales, which are by-products of the fish food industry. Thus, this review aims to enlighten the fundamental characteristics of Ch and HAp biomaterials which makes them attractive to PJI prevention and bone regeneration, summarizing relevant studies with these biomaterials to the field.Veritati - Repositório Institucional da Universidade Católica PortuguesaCosta-Pinto, Ana RitaLemos, Ana LuísaTavaria, Freni KekhasharúPintado, Manuela2021-03-29T16:36:37Z2021-02-082021-02-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/32358eng1996-194410.3390/ma1404080485100716228PMC791494133567675000624086200001info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-19T01:37:04Zoai:repositorio.ucp.pt:10400.14/32358Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:26:07.867742Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Chitosan and hydroxyapatite based biomaterials to circumvent periprosthetic joint infections |
title |
Chitosan and hydroxyapatite based biomaterials to circumvent periprosthetic joint infections |
spellingShingle |
Chitosan and hydroxyapatite based biomaterials to circumvent periprosthetic joint infections Costa-Pinto, Ana Rita Antimicrobial Biomaterials Chitosan Hydroxyapatite Oste-oregeneration Periprosthetic joint infection |
title_short |
Chitosan and hydroxyapatite based biomaterials to circumvent periprosthetic joint infections |
title_full |
Chitosan and hydroxyapatite based biomaterials to circumvent periprosthetic joint infections |
title_fullStr |
Chitosan and hydroxyapatite based biomaterials to circumvent periprosthetic joint infections |
title_full_unstemmed |
Chitosan and hydroxyapatite based biomaterials to circumvent periprosthetic joint infections |
title_sort |
Chitosan and hydroxyapatite based biomaterials to circumvent periprosthetic joint infections |
author |
Costa-Pinto, Ana Rita |
author_facet |
Costa-Pinto, Ana Rita Lemos, Ana Luísa Tavaria, Freni Kekhasharú Pintado, Manuela |
author_role |
author |
author2 |
Lemos, Ana Luísa Tavaria, Freni Kekhasharú Pintado, Manuela |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Costa-Pinto, Ana Rita Lemos, Ana Luísa Tavaria, Freni Kekhasharú Pintado, Manuela |
dc.subject.por.fl_str_mv |
Antimicrobial Biomaterials Chitosan Hydroxyapatite Oste-oregeneration Periprosthetic joint infection |
topic |
Antimicrobial Biomaterials Chitosan Hydroxyapatite Oste-oregeneration Periprosthetic joint infection |
description |
Every year, worldwide, millions of people suffering from joint pain undergo joint replace-ment. For most patients, joint arthroplasty reduces pain and improve function, though a small fraction will experience implant failure. One of the main reasons includes prosthetic joint infection (PJI), involving the prosthesis and adjacent tissues. Few microorganisms (MO) are required to inocu-late the implant, resulting in the formation of a biofilm on its surface. Standard treatment includes not only removal of the infected prosthesis but also the elimination of necrotic bone fragments, local and/or systemic administration of antibiotics, and revision arthroplasty with a new prosthesis, immediately after the infection is cleared. Therefore, an alternative to the conventional therapeutics would be the incorporation of natural antimicrobial compounds into the prosthesis. Chitosan (Ch) is a potential valuable biomaterial presenting properties such as biocompatibility, biodegradability, low immunogenicity, wound healing ability, antimicrobial activity, and anti-inflammatory potential. Regarding its antimicrobial activity, Gram-negative and Gram-positive bacteria, as well as fungi are highly susceptible to chitosan. Calcium phosphate (CaP)-based materials are commonly utilized in orthopedic and dentistry for their excellent biocompatibility and bioactivity, particularly in the establishment of cohesive bone bonding that yields effective and rapid osteointegration. At present, the majority of CaP-based materials are synthetic, which conducts to the depletion of the natural resources of phosphorous in the future due to the extensive use of phosphate. CaP in the form of hydroxyapatite (HAp) may be extracted from natural sources as fish bones or scales, which are by-products of the fish food industry. Thus, this review aims to enlighten the fundamental characteristics of Ch and HAp biomaterials which makes them attractive to PJI prevention and bone regeneration, summarizing relevant studies with these biomaterials to the field. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-29T16:36:37Z 2021-02-08 2021-02-08T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/32358 |
url |
http://hdl.handle.net/10400.14/32358 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1996-1944 10.3390/ma14040804 85100716228 PMC7914941 33567675 000624086200001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131977629040640 |