An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings

Detalhes bibliográficos
Autor(a) principal: Kuijper, M.
Data de Publicação: 2017
Outros Autores: Pinto, R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/18078
Resumo: The construction of shortest feedback shift registers for a finite sequence S1,…,SN is considered over finite chain rings, such as Zpr. A novel algorithm is presented that yields a parametrization of all shortest feedback shift registers for the sequence of numbers S1,…,SN, thus solving an open problem in the literature. The algorithm iteratively processes each number, starting with S1, and constructs at each step a particular type of minimal basis. The construction involves a simple update rule at each step which leads to computational efficiency. It is shown that the algorithm simultaneously computes a similar parametrization for the reverse sequence SN,…,S1. The complexity order of the algorithm is shown to be O(rN2).
id RCAP_bdf1a863d0414419f89232dc5f4e0ee2
oai_identifier_str oai:ria.ua.pt:10773/18078
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling An iterative algorithm for parametrization of shortest length linear shift registers over finite chain ringsIterative algorithmsMinimal basisParametrizationPolynomial modulesSequencesShift registersThe construction of shortest feedback shift registers for a finite sequence S1,…,SN is considered over finite chain rings, such as Zpr. A novel algorithm is presented that yields a parametrization of all shortest feedback shift registers for the sequence of numbers S1,…,SN, thus solving an open problem in the literature. The algorithm iteratively processes each number, starting with S1, and constructs at each step a particular type of minimal basis. The construction involves a simple update rule at each step which leads to computational efficiency. It is shown that the algorithm simultaneously computes a similar parametrization for the reverse sequence SN,…,S1. The complexity order of the algorithm is shown to be O(rN2).Springer Verlag2018-07-20T14:01:01Z2017-05-01T00:00:00Z2017-052018-05-01T13:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/18078eng0925-102210.1007/s10623-016-0226-3Kuijper, M.Pinto, R.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:34:17Zoai:ria.ua.pt:10773/18078Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:52:54.072806Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings
title An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings
spellingShingle An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings
Kuijper, M.
Iterative algorithms
Minimal basis
Parametrization
Polynomial modules
Sequences
Shift registers
title_short An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings
title_full An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings
title_fullStr An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings
title_full_unstemmed An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings
title_sort An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings
author Kuijper, M.
author_facet Kuijper, M.
Pinto, R.
author_role author
author2 Pinto, R.
author2_role author
dc.contributor.author.fl_str_mv Kuijper, M.
Pinto, R.
dc.subject.por.fl_str_mv Iterative algorithms
Minimal basis
Parametrization
Polynomial modules
Sequences
Shift registers
topic Iterative algorithms
Minimal basis
Parametrization
Polynomial modules
Sequences
Shift registers
description The construction of shortest feedback shift registers for a finite sequence S1,…,SN is considered over finite chain rings, such as Zpr. A novel algorithm is presented that yields a parametrization of all shortest feedback shift registers for the sequence of numbers S1,…,SN, thus solving an open problem in the literature. The algorithm iteratively processes each number, starting with S1, and constructs at each step a particular type of minimal basis. The construction involves a simple update rule at each step which leads to computational efficiency. It is shown that the algorithm simultaneously computes a similar parametrization for the reverse sequence SN,…,S1. The complexity order of the algorithm is shown to be O(rN2).
publishDate 2017
dc.date.none.fl_str_mv 2017-05-01T00:00:00Z
2017-05
2018-07-20T14:01:01Z
2018-05-01T13:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/18078
url http://hdl.handle.net/10773/18078
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0925-1022
10.1007/s10623-016-0226-3
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137579766906880