An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/18078 |
Resumo: | The construction of shortest feedback shift registers for a finite sequence S1,…,SN is considered over finite chain rings, such as Zpr. A novel algorithm is presented that yields a parametrization of all shortest feedback shift registers for the sequence of numbers S1,…,SN, thus solving an open problem in the literature. The algorithm iteratively processes each number, starting with S1, and constructs at each step a particular type of minimal basis. The construction involves a simple update rule at each step which leads to computational efficiency. It is shown that the algorithm simultaneously computes a similar parametrization for the reverse sequence SN,…,S1. The complexity order of the algorithm is shown to be O(rN2). |
id |
RCAP_bdf1a863d0414419f89232dc5f4e0ee2 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/18078 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
An iterative algorithm for parametrization of shortest length linear shift registers over finite chain ringsIterative algorithmsMinimal basisParametrizationPolynomial modulesSequencesShift registersThe construction of shortest feedback shift registers for a finite sequence S1,…,SN is considered over finite chain rings, such as Zpr. A novel algorithm is presented that yields a parametrization of all shortest feedback shift registers for the sequence of numbers S1,…,SN, thus solving an open problem in the literature. The algorithm iteratively processes each number, starting with S1, and constructs at each step a particular type of minimal basis. The construction involves a simple update rule at each step which leads to computational efficiency. It is shown that the algorithm simultaneously computes a similar parametrization for the reverse sequence SN,…,S1. The complexity order of the algorithm is shown to be O(rN2).Springer Verlag2018-07-20T14:01:01Z2017-05-01T00:00:00Z2017-052018-05-01T13:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/18078eng0925-102210.1007/s10623-016-0226-3Kuijper, M.Pinto, R.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:34:17Zoai:ria.ua.pt:10773/18078Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:52:54.072806Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings |
title |
An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings |
spellingShingle |
An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings Kuijper, M. Iterative algorithms Minimal basis Parametrization Polynomial modules Sequences Shift registers |
title_short |
An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings |
title_full |
An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings |
title_fullStr |
An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings |
title_full_unstemmed |
An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings |
title_sort |
An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings |
author |
Kuijper, M. |
author_facet |
Kuijper, M. Pinto, R. |
author_role |
author |
author2 |
Pinto, R. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Kuijper, M. Pinto, R. |
dc.subject.por.fl_str_mv |
Iterative algorithms Minimal basis Parametrization Polynomial modules Sequences Shift registers |
topic |
Iterative algorithms Minimal basis Parametrization Polynomial modules Sequences Shift registers |
description |
The construction of shortest feedback shift registers for a finite sequence S1,…,SN is considered over finite chain rings, such as Zpr. A novel algorithm is presented that yields a parametrization of all shortest feedback shift registers for the sequence of numbers S1,…,SN, thus solving an open problem in the literature. The algorithm iteratively processes each number, starting with S1, and constructs at each step a particular type of minimal basis. The construction involves a simple update rule at each step which leads to computational efficiency. It is shown that the algorithm simultaneously computes a similar parametrization for the reverse sequence SN,…,S1. The complexity order of the algorithm is shown to be O(rN2). |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-05-01T00:00:00Z 2017-05 2018-07-20T14:01:01Z 2018-05-01T13:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/18078 |
url |
http://hdl.handle.net/10773/18078 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0925-1022 10.1007/s10623-016-0226-3 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137579766906880 |