Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/4601 https://doi.org/10.1016/j.laa.2007.02.021 |
Resumo: | Let V be a finite dimension vector space. For a linear operator on V, f, D(f) denotes the restriction of the derivation associated with f to the mth Grassmann space of V. In [Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994) 140-146] Dias da Silva and Hamidoune obtained a lower bound for the degree of the minimal polynomial of D(f), over an arbitrary field. Over a field of zero characteristic that lower bound is given bydeg(PD(f))[greater-or-equal, slanted]m(deg(Pf)-m)+1.Using additive number theory results, results on the elementary divisors of D(f) and methods presented by Marcus and Ali in [Minimal polynomials of additive commutators and jordan products, J. Algebra 22 (1972) 12-33] we obtain a characterization of equality cases in the former inequality, over a field of zero characteristic, whenever m does not exceed the number of distinct eigenvalues of f. |
id |
RCAP_cabeaf6e1f29da584a4a7504af080b09 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/4601 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spacesGrassmann spaceDerivationMinimal polynomialLet V be a finite dimension vector space. For a linear operator on V, f, D(f) denotes the restriction of the derivation associated with f to the mth Grassmann space of V. In [Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994) 140-146] Dias da Silva and Hamidoune obtained a lower bound for the degree of the minimal polynomial of D(f), over an arbitrary field. Over a field of zero characteristic that lower bound is given bydeg(PD(f))[greater-or-equal, slanted]m(deg(Pf)-m)+1.Using additive number theory results, results on the elementary divisors of D(f) and methods presented by Marcus and Ali in [Minimal polynomials of additive commutators and jordan products, J. Algebra 22 (1972) 12-33] we obtain a characterization of equality cases in the former inequality, over a field of zero characteristic, whenever m does not exceed the number of distinct eigenvalues of f.http://www.sciencedirect.com/science/article/B6V0R-4N4J352-3/1/1ed47bbdae767944ea37612f8490fe7e2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4601http://hdl.handle.net/10316/4601https://doi.org/10.1016/j.laa.2007.02.021engLinear Algebra and its Applications. 424:2-3 (2007) 492-509Caldeira, Cristinainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:49:13Zoai:estudogeral.uc.pt:10316/4601Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:41.338807Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces |
title |
Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces |
spellingShingle |
Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces Caldeira, Cristina Grassmann space Derivation Minimal polynomial |
title_short |
Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces |
title_full |
Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces |
title_fullStr |
Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces |
title_full_unstemmed |
Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces |
title_sort |
Critical operators for the degree of the minimal polynomial of derivations restricted to Grassmann spaces |
author |
Caldeira, Cristina |
author_facet |
Caldeira, Cristina |
author_role |
author |
dc.contributor.author.fl_str_mv |
Caldeira, Cristina |
dc.subject.por.fl_str_mv |
Grassmann space Derivation Minimal polynomial |
topic |
Grassmann space Derivation Minimal polynomial |
description |
Let V be a finite dimension vector space. For a linear operator on V, f, D(f) denotes the restriction of the derivation associated with f to the mth Grassmann space of V. In [Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994) 140-146] Dias da Silva and Hamidoune obtained a lower bound for the degree of the minimal polynomial of D(f), over an arbitrary field. Over a field of zero characteristic that lower bound is given bydeg(PD(f))[greater-or-equal, slanted]m(deg(Pf)-m)+1.Using additive number theory results, results on the elementary divisors of D(f) and methods presented by Marcus and Ali in [Minimal polynomials of additive commutators and jordan products, J. Algebra 22 (1972) 12-33] we obtain a characterization of equality cases in the former inequality, over a field of zero characteristic, whenever m does not exceed the number of distinct eigenvalues of f. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/4601 http://hdl.handle.net/10316/4601 https://doi.org/10.1016/j.laa.2007.02.021 |
url |
http://hdl.handle.net/10316/4601 https://doi.org/10.1016/j.laa.2007.02.021 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Linear Algebra and its Applications. 424:2-3 (2007) 492-509 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133897129197568 |