Hamiltonian elliptic dynamics on symplectic 4-manifolds
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/28970 |
Resumo: | We consider C²-Hamiltonian functions on compact 4-dimensional symplectic manifolds to study the elliptic dynamics of the Hamiltonian flow, namely the so-called Newhouse dichotomy. We show that for any open set U intersecting a far from Anosov regular energy surface, there is a nearby Hamiltonian having an elliptic closed orbit through U. Moreover, this implies that, for far from Anosov regular energy surfaces of a C²-generic Hamiltonian, the elliptic closed orbits are generic. |
id |
RCAP_beb60764a4f5fcc90c4ad534bb10ef8b |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/28970 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hamiltonian elliptic dynamics on symplectic 4-manifoldsHamiltonian FunctionsElliptic DynamicsGeometric and Probabilistic PerspectiveWe consider C²-Hamiltonian functions on compact 4-dimensional symplectic manifolds to study the elliptic dynamics of the Hamiltonian flow, namely the so-called Newhouse dichotomy. We show that for any open set U intersecting a far from Anosov regular energy surface, there is a nearby Hamiltonian having an elliptic closed orbit through U. Moreover, this implies that, for far from Anosov regular energy surfaces of a C²-generic Hamiltonian, the elliptic closed orbits are generic.American Mathematical Society (AMS)Repositório da Universidade de LisboaBessa, MárioDias, João Lopes2023-10-13T08:26:50Z20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/28970engBessa, Mário and João Lopes Dias .(2009). “Hamiltonian elliptic dynamics on symplectic 4-manifolds” . Proceedings American Mathematical Society, Volume 137, Number 2: pp. 585–592 (Search PDF in 2023).1088-6826info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-15T01:33:47Zoai:www.repository.utl.pt:10400.5/28970Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:35:46.188772Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hamiltonian elliptic dynamics on symplectic 4-manifolds |
title |
Hamiltonian elliptic dynamics on symplectic 4-manifolds |
spellingShingle |
Hamiltonian elliptic dynamics on symplectic 4-manifolds Bessa, Mário Hamiltonian Functions Elliptic Dynamics Geometric and Probabilistic Perspective |
title_short |
Hamiltonian elliptic dynamics on symplectic 4-manifolds |
title_full |
Hamiltonian elliptic dynamics on symplectic 4-manifolds |
title_fullStr |
Hamiltonian elliptic dynamics on symplectic 4-manifolds |
title_full_unstemmed |
Hamiltonian elliptic dynamics on symplectic 4-manifolds |
title_sort |
Hamiltonian elliptic dynamics on symplectic 4-manifolds |
author |
Bessa, Mário |
author_facet |
Bessa, Mário Dias, João Lopes |
author_role |
author |
author2 |
Dias, João Lopes |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Bessa, Mário Dias, João Lopes |
dc.subject.por.fl_str_mv |
Hamiltonian Functions Elliptic Dynamics Geometric and Probabilistic Perspective |
topic |
Hamiltonian Functions Elliptic Dynamics Geometric and Probabilistic Perspective |
description |
We consider C²-Hamiltonian functions on compact 4-dimensional symplectic manifolds to study the elliptic dynamics of the Hamiltonian flow, namely the so-called Newhouse dichotomy. We show that for any open set U intersecting a far from Anosov regular energy surface, there is a nearby Hamiltonian having an elliptic closed orbit through U. Moreover, this implies that, for far from Anosov regular energy surfaces of a C²-generic Hamiltonian, the elliptic closed orbits are generic. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z 2023-10-13T08:26:50Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/28970 |
url |
http://hdl.handle.net/10400.5/28970 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Bessa, Mário and João Lopes Dias .(2009). “Hamiltonian elliptic dynamics on symplectic 4-manifolds” . Proceedings American Mathematical Society, Volume 137, Number 2: pp. 585–592 (Search PDF in 2023). 1088-6826 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society (AMS) |
publisher.none.fl_str_mv |
American Mathematical Society (AMS) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133620614463488 |