On the symplectic integration of Hamiltonian systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/25673 |
Resumo: | Os sistemas Hamiltonianos formam uma das classes mais importantes de equações diferenciais. Além de constituírem o formalismo central da física clássica, sua aplicação se estende a uma grande variedade de outros campos de estudo. Esses sistemas possuem uma característica notória do ponto de vista da matemática, a saber, que a sua ação sobre seus estados iniciais preserva uma estrutura geométrica conhecida como simpleticidade. Este fato tem importantes consequências sobre as características qualitativas do comportamento do sistema, em especial no longo prazo. Neste trabalho, são estudados métodos numéricos para obter soluções aproximadas para sistemas Hamiltonianos (já que, via de regra, soluções exatas não podem ser encontradas) que preservem a estrutura simplética das equações originais. Para tal, é feita uma revisão da teoria clássica da integração numérica de equações diferenciais, bem como de temas mais recentes como os integradores exponenciais. Além de expor a literatura mais recente sobre integradores simpléticos do tipo Runge-Kutta Exponencial, o trabalho propõe um algoritmo para o cálculo computacionalmente eficientes de integrais envolvendo exponenciais de matrizes, que são centrais para a integração simplética estável de ordem alta. |
id |
FGV_c5cf677ae93d0e94a38505aa4ce18676 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/25673 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Pozo, Diego NavarroEscolas::EMApAronna, Maria SoledadVigo, Daniel Gregório AlfaroSilva, Moacyr Alvim Horta Barbosa daCruz Cancino, Hugo Alexander de la2018-10-29T18:11:10Z2018-10-29T18:11:10Z2018-07-30http://hdl.handle.net/10438/25673Os sistemas Hamiltonianos formam uma das classes mais importantes de equações diferenciais. Além de constituírem o formalismo central da física clássica, sua aplicação se estende a uma grande variedade de outros campos de estudo. Esses sistemas possuem uma característica notória do ponto de vista da matemática, a saber, que a sua ação sobre seus estados iniciais preserva uma estrutura geométrica conhecida como simpleticidade. Este fato tem importantes consequências sobre as características qualitativas do comportamento do sistema, em especial no longo prazo. Neste trabalho, são estudados métodos numéricos para obter soluções aproximadas para sistemas Hamiltonianos (já que, via de regra, soluções exatas não podem ser encontradas) que preservem a estrutura simplética das equações originais. Para tal, é feita uma revisão da teoria clássica da integração numérica de equações diferenciais, bem como de temas mais recentes como os integradores exponenciais. Além de expor a literatura mais recente sobre integradores simpléticos do tipo Runge-Kutta Exponencial, o trabalho propõe um algoritmo para o cálculo computacionalmente eficientes de integrais envolvendo exponenciais de matrizes, que são centrais para a integração simplética estável de ordem alta.Hamiltonian systems form one of the most important classes of differential equations describing the evolution of physical phenomena. They are the backbone of classical mechanics and their application covers many different areas such as molecular dynamics, hydrodynamics, celestial and statistical mechanics, just to mention a few of them. A noteworthy feature of Hamiltonian systems is that their flow possesses a geometric property -known as symplecticity- which has a major impact on the long-time behavior of the solution. Since in general closed-form solutions can be found only in few particular cases, the construction and analysis of numerical integrators -able to produce discrete approximations that are also symplecticity preserving- is crucial for studying these systems. In this work we present the key ideas about Hamiltonian systems and their theoretical properties. We also review the main numerical methods and techniques to design and analyze symplectic integrators. Special attention is given to the stability and dynamical properties of the methods, as well as their effectiveness for long-term simulations. Finally, we propose an algorithm to improve the computational implementation of the family of exponential-based symplectic integrators recently found in the literature.engSymplectic integrationHamiltonian systemsMatemáticaSistemas hamiltonianosVariedades simpléticasSistemas hamiltonianosVariedades simpléticasOn the symplectic integration of Hamiltonian systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis2018-07-30reponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTEXTdissert diego revisada + ficha + assinaturas.pdf.txtdissert diego revisada + ficha + assinaturas.pdf.txtExtracted texttext/plain103589https://repositorio.fgv.br/bitstreams/8d64be78-f5da-4558-b104-28e8f8bc2937/download4e1f56dc1a4e97c7213f68ab9b2c971dMD55ORIGINALdissert diego revisada + ficha + assinaturas.pdfdissert diego revisada + ficha + assinaturas.pdfSEGUNDA resubmissão c/ ficha e folha de assinaturas; favor ignorar a resubmissão anterior.application/pdf953096https://repositorio.fgv.br/bitstreams/e58e50a5-6eae-43dd-9e70-c8ba5723766a/download005110857b3e2e871af759d632f8ef55MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/9c78f577-6481-4776-ac7d-3dfc547fdc64/downloaddfb340242cced38a6cca06c627998fa1MD52THUMBNAILdissert diego revisada + ficha + assinaturas.pdf.jpgdissert diego revisada + ficha + assinaturas.pdf.jpgGenerated Thumbnailimage/jpeg2696https://repositorio.fgv.br/bitstreams/038e3771-b465-4e25-997f-4eea634b9d01/download23a486a79713bbb64d9a438859fe930fMD5610438/256732023-11-26 14:03:39.729open.accessoai:repositorio.fgv.br:10438/25673https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-26T14:03:39Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.pt_BR.fl_str_mv |
On the symplectic integration of Hamiltonian systems |
title |
On the symplectic integration of Hamiltonian systems |
spellingShingle |
On the symplectic integration of Hamiltonian systems Pozo, Diego Navarro Symplectic integration Hamiltonian systems Sistemas hamiltonianos Variedades simpléticas Matemática Sistemas hamiltonianos Variedades simpléticas |
title_short |
On the symplectic integration of Hamiltonian systems |
title_full |
On the symplectic integration of Hamiltonian systems |
title_fullStr |
On the symplectic integration of Hamiltonian systems |
title_full_unstemmed |
On the symplectic integration of Hamiltonian systems |
title_sort |
On the symplectic integration of Hamiltonian systems |
author |
Pozo, Diego Navarro |
author_facet |
Pozo, Diego Navarro |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EMAp |
dc.contributor.member.none.fl_str_mv |
Aronna, Maria Soledad Vigo, Daniel Gregório Alfaro Silva, Moacyr Alvim Horta Barbosa da |
dc.contributor.author.fl_str_mv |
Pozo, Diego Navarro |
dc.contributor.advisor1.fl_str_mv |
Cruz Cancino, Hugo Alexander de la |
contributor_str_mv |
Cruz Cancino, Hugo Alexander de la |
dc.subject.eng.fl_str_mv |
Symplectic integration Hamiltonian systems |
topic |
Symplectic integration Hamiltonian systems Sistemas hamiltonianos Variedades simpléticas Matemática Sistemas hamiltonianos Variedades simpléticas |
dc.subject.por.fl_str_mv |
Sistemas hamiltonianos Variedades simpléticas |
dc.subject.area.por.fl_str_mv |
Matemática |
dc.subject.bibliodata.por.fl_str_mv |
Sistemas hamiltonianos Variedades simpléticas |
description |
Os sistemas Hamiltonianos formam uma das classes mais importantes de equações diferenciais. Além de constituírem o formalismo central da física clássica, sua aplicação se estende a uma grande variedade de outros campos de estudo. Esses sistemas possuem uma característica notória do ponto de vista da matemática, a saber, que a sua ação sobre seus estados iniciais preserva uma estrutura geométrica conhecida como simpleticidade. Este fato tem importantes consequências sobre as características qualitativas do comportamento do sistema, em especial no longo prazo. Neste trabalho, são estudados métodos numéricos para obter soluções aproximadas para sistemas Hamiltonianos (já que, via de regra, soluções exatas não podem ser encontradas) que preservem a estrutura simplética das equações originais. Para tal, é feita uma revisão da teoria clássica da integração numérica de equações diferenciais, bem como de temas mais recentes como os integradores exponenciais. Além de expor a literatura mais recente sobre integradores simpléticos do tipo Runge-Kutta Exponencial, o trabalho propõe um algoritmo para o cálculo computacionalmente eficientes de integrais envolvendo exponenciais de matrizes, que são centrais para a integração simplética estável de ordem alta. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-10-29T18:11:10Z |
dc.date.available.fl_str_mv |
2018-10-29T18:11:10Z |
dc.date.issued.fl_str_mv |
2018-07-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/25673 |
url |
http://hdl.handle.net/10438/25673 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/8d64be78-f5da-4558-b104-28e8f8bc2937/download https://repositorio.fgv.br/bitstreams/e58e50a5-6eae-43dd-9e70-c8ba5723766a/download https://repositorio.fgv.br/bitstreams/9c78f577-6481-4776-ac7d-3dfc547fdc64/download https://repositorio.fgv.br/bitstreams/038e3771-b465-4e25-997f-4eea634b9d01/download |
bitstream.checksum.fl_str_mv |
4e1f56dc1a4e97c7213f68ab9b2c971d 005110857b3e2e871af759d632f8ef55 dfb340242cced38a6cca06c627998fa1 23a486a79713bbb64d9a438859fe930f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1819893534032920576 |