Gait rehabilitation monitor

Detalhes bibliográficos
Autor(a) principal: Leite, Paulo
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/18574
Resumo: This work presents a simple wearable, non-intrusive affordable mobile framework that allows remote patient monitoring during gait rehabilitation, by doctors and physiotherapists. The system includes a set of 2 Shimmer3 9DoF Inertial Measurement Units (IMUs), Bluetooth compatible from Shimmer, an Android smartphone for collecting and primary processing of data and persistence in a local database. Low computational load algorithms based on Euler angles and accelerometer, gyroscope and magnetometer signals were developed and used for the classification and identification of several gait disturbances. These algorithms include the alignment of IMUs sensors data by means of a common temporal reference as well as heel strike and stride detection algorithms to help segmentation of the remotely collected signals by the System app to identify gait strides and extract relevant features to feed, train and test a classifier to predict gait abnormalities in gait sessions. A set of drivers from Shimmer manufacturer is used to make the connection between the app and the set of IMUs using Bluetooth. The developed app allows users to collect data and train a classification model for identifying abnormal and normal gait types. The system provides a REST API available in a backend server along with Java and Python libraries and a PostgreSQL database. The machine-learning type is Supervised using Extremely Randomized Trees method. Frequency, time and time-frequency domain features were extracted from the collected and processed signals to train the classifier. To test the framework a set of gait abnormalities and normal gait were used to train a model and test the classifier.
id RCAP_bedfab7c07f08e0b44000c58d85afc75
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/18574
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Gait rehabilitation monitorGaitClassificationRehabilitationAndroidEngenharia de telecomunicaçõesTelemóvelMachine learningFisioterapiaReabilitaçãoSensorAplicação informáticaThis work presents a simple wearable, non-intrusive affordable mobile framework that allows remote patient monitoring during gait rehabilitation, by doctors and physiotherapists. The system includes a set of 2 Shimmer3 9DoF Inertial Measurement Units (IMUs), Bluetooth compatible from Shimmer, an Android smartphone for collecting and primary processing of data and persistence in a local database. Low computational load algorithms based on Euler angles and accelerometer, gyroscope and magnetometer signals were developed and used for the classification and identification of several gait disturbances. These algorithms include the alignment of IMUs sensors data by means of a common temporal reference as well as heel strike and stride detection algorithms to help segmentation of the remotely collected signals by the System app to identify gait strides and extract relevant features to feed, train and test a classifier to predict gait abnormalities in gait sessions. A set of drivers from Shimmer manufacturer is used to make the connection between the app and the set of IMUs using Bluetooth. The developed app allows users to collect data and train a classification model for identifying abnormal and normal gait types. The system provides a REST API available in a backend server along with Java and Python libraries and a PostgreSQL database. The machine-learning type is Supervised using Extremely Randomized Trees method. Frequency, time and time-frequency domain features were extracted from the collected and processed signals to train the classifier. To test the framework a set of gait abnormalities and normal gait were used to train a model and test the classifier.Este trabalho apresenta uma estrutura móvel acessível, simples e não intrusiva, que permite a monitorização e a assistência remota de pacientes durante a reabilitação da marcha, por médicos e fisioterapeutas que monitorizam a reabilitação da marcha do paciente. O sistema inclui um conjunto de 2 IMUs (Inertial Mesaurement Units) Shimmer3 da marca Shimmer, compatíveís com Bluetooth, um smartphone Android para recolha, e pré-processamento de dados e armazenamento numa base de dados local. Algoritmos de baixa carga computacional baseados em ângulos Euler e sinais de acelerómetros, giroscópios e magnetómetros foram desenvolvidos e utilizados para a classificação e identificação de diversas perturbações da marcha. Estes algoritmos incluem o alinhamento e sincronização dos dados dos sensores IMUs usando uma referência temporal comum, além de algoritmos de detecção de passos e strides para auxiliar a segmentação dos sinais recolhidos remotamente pelaappdestaframeworke identificar os passos da marcha extraindo as características relevantes para treinar e testar um classificador que faça a predição de deficiências na marcha durante as sessões de monitorização. Um conjunto de drivers do fabricante Shimmer é usado para fazer a conexão entre a app e o conjunto de IMUs através de Bluetooth. A app desenvolvida permite aos utilizadores recolher dados e treinar um modelo de classificação para identificar os tipos de marcha normais e patológicos. O sistema fornece uma REST API disponível num servidor backend recorrendo a bibliotecas Java e Python e a uma base de dados PostgreSQL. O tipo de machine-learning é Supervisionado usando Extremely Randomized Trees. Features no domínio do tempo, da frequência e do tempo-frequência foram extraídas dos sinais recolhidos e processados para treinar o classificador. Para testar a estrutura, um conjunto de marchas patológicas e normais foram utilizadas para treinar um modelo e testar o classificador.2019-08-20T16:16:23Z2018-11-30T00:00:00Z2018-11-302018-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/18574TID:202186032engLeite, Pauloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:49:41Zoai:repositorio.iscte-iul.pt:10071/18574Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:24:25.490254Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Gait rehabilitation monitor
title Gait rehabilitation monitor
spellingShingle Gait rehabilitation monitor
Leite, Paulo
Gait
Classification
Rehabilitation
Android
Engenharia de telecomunicações
Telemóvel
Machine learning
Fisioterapia
Reabilitação
Sensor
Aplicação informática
title_short Gait rehabilitation monitor
title_full Gait rehabilitation monitor
title_fullStr Gait rehabilitation monitor
title_full_unstemmed Gait rehabilitation monitor
title_sort Gait rehabilitation monitor
author Leite, Paulo
author_facet Leite, Paulo
author_role author
dc.contributor.author.fl_str_mv Leite, Paulo
dc.subject.por.fl_str_mv Gait
Classification
Rehabilitation
Android
Engenharia de telecomunicações
Telemóvel
Machine learning
Fisioterapia
Reabilitação
Sensor
Aplicação informática
topic Gait
Classification
Rehabilitation
Android
Engenharia de telecomunicações
Telemóvel
Machine learning
Fisioterapia
Reabilitação
Sensor
Aplicação informática
description This work presents a simple wearable, non-intrusive affordable mobile framework that allows remote patient monitoring during gait rehabilitation, by doctors and physiotherapists. The system includes a set of 2 Shimmer3 9DoF Inertial Measurement Units (IMUs), Bluetooth compatible from Shimmer, an Android smartphone for collecting and primary processing of data and persistence in a local database. Low computational load algorithms based on Euler angles and accelerometer, gyroscope and magnetometer signals were developed and used for the classification and identification of several gait disturbances. These algorithms include the alignment of IMUs sensors data by means of a common temporal reference as well as heel strike and stride detection algorithms to help segmentation of the remotely collected signals by the System app to identify gait strides and extract relevant features to feed, train and test a classifier to predict gait abnormalities in gait sessions. A set of drivers from Shimmer manufacturer is used to make the connection between the app and the set of IMUs using Bluetooth. The developed app allows users to collect data and train a classification model for identifying abnormal and normal gait types. The system provides a REST API available in a backend server along with Java and Python libraries and a PostgreSQL database. The machine-learning type is Supervised using Extremely Randomized Trees method. Frequency, time and time-frequency domain features were extracted from the collected and processed signals to train the classifier. To test the framework a set of gait abnormalities and normal gait were used to train a model and test the classifier.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-30T00:00:00Z
2018-11-30
2018-10
2019-08-20T16:16:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/18574
TID:202186032
url http://hdl.handle.net/10071/18574
identifier_str_mv TID:202186032
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/octet-stream
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134806835986432