Spectroscopic and in silico characterization of the interaction between synthetic 2-substituted-naphtho-1,4-quinones and human serum albumin
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10316/115114 https://doi.org/10.1016/j.molliq.2024.124829 |
Resumo: | The intermolecular interaction between 2-(N-phenyl-N-methyl)aminonaphtho-1,4-quinone (1) and 2-(4-N-methylaminophenyl)naphtho-1,4-quinone (2) and human serum albumin (HSA) was investigated using spectroscopic techniques combined with in silico calculations via molecular docking. Steady-state titration of HSA fluorescence by 1 and 2 (λexc 295 nm) in PBS at 305, 310, and 315 K, as well as studies employing time-resolved fluorescence emission, demonstrated that the HSA:1 and HSA:2 interaction occurs through a static quenching mechanism. The Stern-Volmer constant (Ksv) values, (1.56 ± 0.08) and (3.05 ± 0.10) × 104 L/mol at 310 K for HSA:1 and HSA:2, respectively, indicate a moderate binding affinity. Van't Hoff plots showed that HSA:1 and HSA:2 interactions are spontaneous (negative ΔGo) with a hydrophobic character (ΔSo value of 0.00707 ± 0.00106 and 0.0392 ± 0.0062 kJ/mol K for HSA:1 and HSA:2, respectively) and specific electrostatic interactions (ΔHo value of –22.7 ± 3.3 and −14.4 ± 1.9 kJ/mol for HSA:1 and HSA:2, respectively). Synchronous fluorescence results showed significant perturbation in the microenvironment of the tryptophan residue (Trp-214). Circular dichroism indicated that after interaction with naphthoquinones 1 and 2, the HSA structure remains predominantly in the α-helix form. Finally, molecular docking revealed the formation of hydrophobic, electrostatic, and hydrogen bond interactions with the surrounding amino acid residues in subdomain IIA of HSA, which contains the Trp-214 residue, validated with the experimental drug-displacement assays. Overall, spectroscopic and in silico characterization of HSA:1 and HSA:2 might reflect in a low half-life in the human bloodstream, indicating the necessity of methods to improve the bioavailability, e.g., studies on the type of administration (oral versus intravenous). |
id |
RCAP_bf01025120d1252e2adbf0c06025d4fa |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/115114 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Spectroscopic and in silico characterization of the interaction between synthetic 2-substituted-naphtho-1,4-quinones and human serum albuminHuman Serum AlbuminMolecular DockingNaphtho-1,4-quinone derivativesSpectroscopyThe intermolecular interaction between 2-(N-phenyl-N-methyl)aminonaphtho-1,4-quinone (1) and 2-(4-N-methylaminophenyl)naphtho-1,4-quinone (2) and human serum albumin (HSA) was investigated using spectroscopic techniques combined with in silico calculations via molecular docking. Steady-state titration of HSA fluorescence by 1 and 2 (λexc 295 nm) in PBS at 305, 310, and 315 K, as well as studies employing time-resolved fluorescence emission, demonstrated that the HSA:1 and HSA:2 interaction occurs through a static quenching mechanism. The Stern-Volmer constant (Ksv) values, (1.56 ± 0.08) and (3.05 ± 0.10) × 104 L/mol at 310 K for HSA:1 and HSA:2, respectively, indicate a moderate binding affinity. Van't Hoff plots showed that HSA:1 and HSA:2 interactions are spontaneous (negative ΔGo) with a hydrophobic character (ΔSo value of 0.00707 ± 0.00106 and 0.0392 ± 0.0062 kJ/mol K for HSA:1 and HSA:2, respectively) and specific electrostatic interactions (ΔHo value of –22.7 ± 3.3 and −14.4 ± 1.9 kJ/mol for HSA:1 and HSA:2, respectively). Synchronous fluorescence results showed significant perturbation in the microenvironment of the tryptophan residue (Trp-214). Circular dichroism indicated that after interaction with naphthoquinones 1 and 2, the HSA structure remains predominantly in the α-helix form. Finally, molecular docking revealed the formation of hydrophobic, electrostatic, and hydrogen bond interactions with the surrounding amino acid residues in subdomain IIA of HSA, which contains the Trp-214 residue, validated with the experimental drug-displacement assays. Overall, spectroscopic and in silico characterization of HSA:1 and HSA:2 might reflect in a low half-life in the human bloodstream, indicating the necessity of methods to improve the bioavailability, e.g., studies on the type of administration (oral versus intravenous).Elsevier20242024-12-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/115114https://hdl.handle.net/10316/115114https://doi.org/10.1016/j.molliq.2024.124829eng01677322https://www.sciencedirect.com/science/article/pii/S0167732224008857Silva Moreira, Micaeli Louise daChaves, Otávio AugustoLucas, Nanci Camara deSilva Goulart, Juliana daGarden, Simon J.Serpa, CarlosNetto-Ferreira, José Carlosinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-30T01:22:07Zoai:estudogeral.uc.pt:10316/115114Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-30T01:22:07Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Spectroscopic and in silico characterization of the interaction between synthetic 2-substituted-naphtho-1,4-quinones and human serum albumin |
title |
Spectroscopic and in silico characterization of the interaction between synthetic 2-substituted-naphtho-1,4-quinones and human serum albumin |
spellingShingle |
Spectroscopic and in silico characterization of the interaction between synthetic 2-substituted-naphtho-1,4-quinones and human serum albumin Silva Moreira, Micaeli Louise da Human Serum Albumin Molecular Docking Naphtho-1,4-quinone derivatives Spectroscopy |
title_short |
Spectroscopic and in silico characterization of the interaction between synthetic 2-substituted-naphtho-1,4-quinones and human serum albumin |
title_full |
Spectroscopic and in silico characterization of the interaction between synthetic 2-substituted-naphtho-1,4-quinones and human serum albumin |
title_fullStr |
Spectroscopic and in silico characterization of the interaction between synthetic 2-substituted-naphtho-1,4-quinones and human serum albumin |
title_full_unstemmed |
Spectroscopic and in silico characterization of the interaction between synthetic 2-substituted-naphtho-1,4-quinones and human serum albumin |
title_sort |
Spectroscopic and in silico characterization of the interaction between synthetic 2-substituted-naphtho-1,4-quinones and human serum albumin |
author |
Silva Moreira, Micaeli Louise da |
author_facet |
Silva Moreira, Micaeli Louise da Chaves, Otávio Augusto Lucas, Nanci Camara de Silva Goulart, Juliana da Garden, Simon J. Serpa, Carlos Netto-Ferreira, José Carlos |
author_role |
author |
author2 |
Chaves, Otávio Augusto Lucas, Nanci Camara de Silva Goulart, Juliana da Garden, Simon J. Serpa, Carlos Netto-Ferreira, José Carlos |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Silva Moreira, Micaeli Louise da Chaves, Otávio Augusto Lucas, Nanci Camara de Silva Goulart, Juliana da Garden, Simon J. Serpa, Carlos Netto-Ferreira, José Carlos |
dc.subject.por.fl_str_mv |
Human Serum Albumin Molecular Docking Naphtho-1,4-quinone derivatives Spectroscopy |
topic |
Human Serum Albumin Molecular Docking Naphtho-1,4-quinone derivatives Spectroscopy |
description |
The intermolecular interaction between 2-(N-phenyl-N-methyl)aminonaphtho-1,4-quinone (1) and 2-(4-N-methylaminophenyl)naphtho-1,4-quinone (2) and human serum albumin (HSA) was investigated using spectroscopic techniques combined with in silico calculations via molecular docking. Steady-state titration of HSA fluorescence by 1 and 2 (λexc 295 nm) in PBS at 305, 310, and 315 K, as well as studies employing time-resolved fluorescence emission, demonstrated that the HSA:1 and HSA:2 interaction occurs through a static quenching mechanism. The Stern-Volmer constant (Ksv) values, (1.56 ± 0.08) and (3.05 ± 0.10) × 104 L/mol at 310 K for HSA:1 and HSA:2, respectively, indicate a moderate binding affinity. Van't Hoff plots showed that HSA:1 and HSA:2 interactions are spontaneous (negative ΔGo) with a hydrophobic character (ΔSo value of 0.00707 ± 0.00106 and 0.0392 ± 0.0062 kJ/mol K for HSA:1 and HSA:2, respectively) and specific electrostatic interactions (ΔHo value of –22.7 ± 3.3 and −14.4 ± 1.9 kJ/mol for HSA:1 and HSA:2, respectively). Synchronous fluorescence results showed significant perturbation in the microenvironment of the tryptophan residue (Trp-214). Circular dichroism indicated that after interaction with naphthoquinones 1 and 2, the HSA structure remains predominantly in the α-helix form. Finally, molecular docking revealed the formation of hydrophobic, electrostatic, and hydrogen bond interactions with the surrounding amino acid residues in subdomain IIA of HSA, which contains the Trp-214 residue, validated with the experimental drug-displacement assays. Overall, spectroscopic and in silico characterization of HSA:1 and HSA:2 might reflect in a low half-life in the human bloodstream, indicating the necessity of methods to improve the bioavailability, e.g., studies on the type of administration (oral versus intravenous). |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024 2024-12-31T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/115114 https://hdl.handle.net/10316/115114 https://doi.org/10.1016/j.molliq.2024.124829 |
url |
https://hdl.handle.net/10316/115114 https://doi.org/10.1016/j.molliq.2024.124829 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
01677322 https://www.sciencedirect.com/science/article/pii/S0167732224008857 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545404697280512 |