Mobile robot navigation using reinforcement learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/29636 |
Resumo: | There is a growing interest in the development of service and assistive robot technologies for application in domestic and urban environments. Among the required abilities are autonomous navigation and safety maintenance. Machine Learning provides a set of computational tools that have proved useful for robot navigation, such as neural networks, reinforcement learning and, more recently, end-to-end deep learning. This dissertation aims to investigate the problem of mobile robot navigation in a maze-like environment using a reinforcement learning framework. In particular, the work focuses on how to scale reinforcement learning, and Q-learning in particular, to a real-world problem using a physical robot. First, in order to avoid large state-action spaces and long horizons, the robot system is trained using a hierarchical approach in which low-level components (sub-tasks) are sequenced at a higher-level. Second, a dense reward function is designed for robot navigation in a corridor and moving around a corner, providing the robot with more information (prior knowledge) after each action. The experiments conducted, using a simulated and a real robot, show the feasibility of the hierarchical approach in reducing the complexity of the learning task and the role of the reward function in goal specification. Finally, the study provides detailed evaluation about transferring experience in simulation to the physical robot. |
id |
RCAP_bf2af6d809a03c9f540f95f967c7fd22 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/29636 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Mobile robot navigation using reinforcement learningMobile Robot NavigationReinforcement LearningHierarchical StructureMazeQ-LearningMaze-like EnvironmentThere is a growing interest in the development of service and assistive robot technologies for application in domestic and urban environments. Among the required abilities are autonomous navigation and safety maintenance. Machine Learning provides a set of computational tools that have proved useful for robot navigation, such as neural networks, reinforcement learning and, more recently, end-to-end deep learning. This dissertation aims to investigate the problem of mobile robot navigation in a maze-like environment using a reinforcement learning framework. In particular, the work focuses on how to scale reinforcement learning, and Q-learning in particular, to a real-world problem using a physical robot. First, in order to avoid large state-action spaces and long horizons, the robot system is trained using a hierarchical approach in which low-level components (sub-tasks) are sequenced at a higher-level. Second, a dense reward function is designed for robot navigation in a corridor and moving around a corner, providing the robot with more information (prior knowledge) after each action. The experiments conducted, using a simulated and a real robot, show the feasibility of the hierarchical approach in reducing the complexity of the learning task and the role of the reward function in goal specification. Finally, the study provides detailed evaluation about transferring experience in simulation to the physical robot.Há um interesse crescente no desenvolvimento de tecnologias de servi cós e robôs de assistência para aplicação em ambientes domésticos e urbanos. Entre as habilidades necessárias estão navegação autónoma e manutenção de segurança. O Machine Learning fornece um conjunto de ferramentas computacionais que se mostraram uteis para a navegação de robots, como redes neuronais, Reinforcement Learning e, mais recentemente, Deep Learning. Esta dissertação tem como objetivo investigar o problema da navegação de um robot móvel num labirinto utilizando Reinforcement Learning. Em particular, o trabalho concentra-se em dimensionar o Reinforcement Learning, e o Q-learning em particular, para um problema do mundo real usando um robot físico. Primeiro, para evitar grandes espaços de estado-ação, o sistema robótico é treinado usando uma abordagem hierárquica na qual componentes de baixo nível (sub-tarefas) são sequenciados num nível superior. Em segundo lugar, uma função de reward consistente é projetada para a navegação do robô num corredor e num canto, fornecendo ao robot mais informações (conhecimento prévio) após cada ação. As experiências conduzidas, utilizando um robot simulado e real, mostram a viabilidade da abordagem hierárquica reduzindo a complexidade da tarefa de aprendizagem e o papel da função de recompensa na especificação de um objetivo. Finalmente, o estudo providencia uma avaliação detalhada sobre a experiência transferida de simulação para o robô físico.2020-10-29T15:31:44Z2019-07-01T00:00:00Z2019-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29636engSilva, Diogo Vidal einfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:57:21Zoai:ria.ua.pt:10773/29636Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:55.288724Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Mobile robot navigation using reinforcement learning |
title |
Mobile robot navigation using reinforcement learning |
spellingShingle |
Mobile robot navigation using reinforcement learning Silva, Diogo Vidal e Mobile Robot Navigation Reinforcement Learning Hierarchical Structure Maze Q-Learning Maze-like Environment |
title_short |
Mobile robot navigation using reinforcement learning |
title_full |
Mobile robot navigation using reinforcement learning |
title_fullStr |
Mobile robot navigation using reinforcement learning |
title_full_unstemmed |
Mobile robot navigation using reinforcement learning |
title_sort |
Mobile robot navigation using reinforcement learning |
author |
Silva, Diogo Vidal e |
author_facet |
Silva, Diogo Vidal e |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Diogo Vidal e |
dc.subject.por.fl_str_mv |
Mobile Robot Navigation Reinforcement Learning Hierarchical Structure Maze Q-Learning Maze-like Environment |
topic |
Mobile Robot Navigation Reinforcement Learning Hierarchical Structure Maze Q-Learning Maze-like Environment |
description |
There is a growing interest in the development of service and assistive robot technologies for application in domestic and urban environments. Among the required abilities are autonomous navigation and safety maintenance. Machine Learning provides a set of computational tools that have proved useful for robot navigation, such as neural networks, reinforcement learning and, more recently, end-to-end deep learning. This dissertation aims to investigate the problem of mobile robot navigation in a maze-like environment using a reinforcement learning framework. In particular, the work focuses on how to scale reinforcement learning, and Q-learning in particular, to a real-world problem using a physical robot. First, in order to avoid large state-action spaces and long horizons, the robot system is trained using a hierarchical approach in which low-level components (sub-tasks) are sequenced at a higher-level. Second, a dense reward function is designed for robot navigation in a corridor and moving around a corner, providing the robot with more information (prior knowledge) after each action. The experiments conducted, using a simulated and a real robot, show the feasibility of the hierarchical approach in reducing the complexity of the learning task and the role of the reward function in goal specification. Finally, the study provides detailed evaluation about transferring experience in simulation to the physical robot. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-01T00:00:00Z 2019-07 2020-10-29T15:31:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/29636 |
url |
http://hdl.handle.net/10773/29636 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137674721755136 |