Mobile robot navigation using reinforcement learning

Detalhes bibliográficos
Autor(a) principal: Silva, Diogo Vidal e
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29636
Resumo: There is a growing interest in the development of service and assistive robot technologies for application in domestic and urban environments. Among the required abilities are autonomous navigation and safety maintenance. Machine Learning provides a set of computational tools that have proved useful for robot navigation, such as neural networks, reinforcement learning and, more recently, end-to-end deep learning. This dissertation aims to investigate the problem of mobile robot navigation in a maze-like environment using a reinforcement learning framework. In particular, the work focuses on how to scale reinforcement learning, and Q-learning in particular, to a real-world problem using a physical robot. First, in order to avoid large state-action spaces and long horizons, the robot system is trained using a hierarchical approach in which low-level components (sub-tasks) are sequenced at a higher-level. Second, a dense reward function is designed for robot navigation in a corridor and moving around a corner, providing the robot with more information (prior knowledge) after each action. The experiments conducted, using a simulated and a real robot, show the feasibility of the hierarchical approach in reducing the complexity of the learning task and the role of the reward function in goal specification. Finally, the study provides detailed evaluation about transferring experience in simulation to the physical robot.
id RCAP_bf2af6d809a03c9f540f95f967c7fd22
oai_identifier_str oai:ria.ua.pt:10773/29636
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Mobile robot navigation using reinforcement learningMobile Robot NavigationReinforcement LearningHierarchical StructureMazeQ-LearningMaze-like EnvironmentThere is a growing interest in the development of service and assistive robot technologies for application in domestic and urban environments. Among the required abilities are autonomous navigation and safety maintenance. Machine Learning provides a set of computational tools that have proved useful for robot navigation, such as neural networks, reinforcement learning and, more recently, end-to-end deep learning. This dissertation aims to investigate the problem of mobile robot navigation in a maze-like environment using a reinforcement learning framework. In particular, the work focuses on how to scale reinforcement learning, and Q-learning in particular, to a real-world problem using a physical robot. First, in order to avoid large state-action spaces and long horizons, the robot system is trained using a hierarchical approach in which low-level components (sub-tasks) are sequenced at a higher-level. Second, a dense reward function is designed for robot navigation in a corridor and moving around a corner, providing the robot with more information (prior knowledge) after each action. The experiments conducted, using a simulated and a real robot, show the feasibility of the hierarchical approach in reducing the complexity of the learning task and the role of the reward function in goal specification. Finally, the study provides detailed evaluation about transferring experience in simulation to the physical robot.Há um interesse crescente no desenvolvimento de tecnologias de servi cós e robôs de assistência para aplicação em ambientes domésticos e urbanos. Entre as habilidades necessárias estão navegação autónoma e manutenção de segurança. O Machine Learning fornece um conjunto de ferramentas computacionais que se mostraram uteis para a navegação de robots, como redes neuronais, Reinforcement Learning e, mais recentemente, Deep Learning. Esta dissertação tem como objetivo investigar o problema da navegação de um robot móvel num labirinto utilizando Reinforcement Learning. Em particular, o trabalho concentra-se em dimensionar o Reinforcement Learning, e o Q-learning em particular, para um problema do mundo real usando um robot físico. Primeiro, para evitar grandes espaços de estado-ação, o sistema robótico é treinado usando uma abordagem hierárquica na qual componentes de baixo nível (sub-tarefas) são sequenciados num nível superior. Em segundo lugar, uma função de reward consistente é projetada para a navegação do robô num corredor e num canto, fornecendo ao robot mais informações (conhecimento prévio) após cada ação. As experiências conduzidas, utilizando um robot simulado e real, mostram a viabilidade da abordagem hierárquica reduzindo a complexidade da tarefa de aprendizagem e o papel da função de recompensa na especificação de um objetivo. Finalmente, o estudo providencia uma avaliação detalhada sobre a experiência transferida de simulação para o robô físico.2020-10-29T15:31:44Z2019-07-01T00:00:00Z2019-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29636engSilva, Diogo Vidal einfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:57:21Zoai:ria.ua.pt:10773/29636Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:55.288724Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Mobile robot navigation using reinforcement learning
title Mobile robot navigation using reinforcement learning
spellingShingle Mobile robot navigation using reinforcement learning
Silva, Diogo Vidal e
Mobile Robot Navigation
Reinforcement Learning
Hierarchical Structure
Maze
Q-Learning
Maze-like Environment
title_short Mobile robot navigation using reinforcement learning
title_full Mobile robot navigation using reinforcement learning
title_fullStr Mobile robot navigation using reinforcement learning
title_full_unstemmed Mobile robot navigation using reinforcement learning
title_sort Mobile robot navigation using reinforcement learning
author Silva, Diogo Vidal e
author_facet Silva, Diogo Vidal e
author_role author
dc.contributor.author.fl_str_mv Silva, Diogo Vidal e
dc.subject.por.fl_str_mv Mobile Robot Navigation
Reinforcement Learning
Hierarchical Structure
Maze
Q-Learning
Maze-like Environment
topic Mobile Robot Navigation
Reinforcement Learning
Hierarchical Structure
Maze
Q-Learning
Maze-like Environment
description There is a growing interest in the development of service and assistive robot technologies for application in domestic and urban environments. Among the required abilities are autonomous navigation and safety maintenance. Machine Learning provides a set of computational tools that have proved useful for robot navigation, such as neural networks, reinforcement learning and, more recently, end-to-end deep learning. This dissertation aims to investigate the problem of mobile robot navigation in a maze-like environment using a reinforcement learning framework. In particular, the work focuses on how to scale reinforcement learning, and Q-learning in particular, to a real-world problem using a physical robot. First, in order to avoid large state-action spaces and long horizons, the robot system is trained using a hierarchical approach in which low-level components (sub-tasks) are sequenced at a higher-level. Second, a dense reward function is designed for robot navigation in a corridor and moving around a corner, providing the robot with more information (prior knowledge) after each action. The experiments conducted, using a simulated and a real robot, show the feasibility of the hierarchical approach in reducing the complexity of the learning task and the role of the reward function in goal specification. Finally, the study provides detailed evaluation about transferring experience in simulation to the physical robot.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-01T00:00:00Z
2019-07
2020-10-29T15:31:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29636
url http://hdl.handle.net/10773/29636
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137674721755136