Using Candidates’ Tweets to Predict an election outcome. The United States 2022 Midterm elections study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/159896 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Marketing Intelligence |
id |
RCAP_c024ee962e9b2fc9e9c8f9a379745c1d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/159896 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Using Candidates’ Tweets to Predict an election outcome. The United States 2022 Midterm elections studyMachine LearningPredictive ModellingTopic AnalysisPolitical CommunicationSocial Media Political MarketingTwitterDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoDissertation presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Marketing IntelligenceUnderstanding social media’s role in political communication is crucial in the evolving media landscape. Motivated by the transformative impact of social media on political engagement and discourse, this research fills an under-explored academic gap, studying the effects of geographic focus—local versus national—in candidates’ tweets on U.S. Senate election outcomes. It reveals a modest but significant correlation between the nature of political discourse and election competitiveness. Interestingly, strict adherence to party-centric topics did not significantly influence electoral success. The study assessed the performance of regression and classification models in forecasting election outcomes, with classification models demonstrating superior results. Both models provide a new benchmark for future studies in political communication on social media. These findings bear considerable implications for political practitioners, indicating that election success is not merely guaranteed by echoing party centric issues or predominantly adopting a national communication scope.Rita, Paulo Miguel Rasquinho FerreiraAntónio, Nuno Miguel da ConceiçãoRUNAfonso, Francisco Rodrigo Fernandes2023-10-242026-10-24T00:00:00Z2023-10-24T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/159896TID:203385675enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:42:24Zoai:run.unl.pt:10362/159896Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:57:45.763463Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Using Candidates’ Tweets to Predict an election outcome. The United States 2022 Midterm elections study |
title |
Using Candidates’ Tweets to Predict an election outcome. The United States 2022 Midterm elections study |
spellingShingle |
Using Candidates’ Tweets to Predict an election outcome. The United States 2022 Midterm elections study Afonso, Francisco Rodrigo Fernandes Machine Learning Predictive Modelling Topic Analysis Political Communication Social Media Political Marketing Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Using Candidates’ Tweets to Predict an election outcome. The United States 2022 Midterm elections study |
title_full |
Using Candidates’ Tweets to Predict an election outcome. The United States 2022 Midterm elections study |
title_fullStr |
Using Candidates’ Tweets to Predict an election outcome. The United States 2022 Midterm elections study |
title_full_unstemmed |
Using Candidates’ Tweets to Predict an election outcome. The United States 2022 Midterm elections study |
title_sort |
Using Candidates’ Tweets to Predict an election outcome. The United States 2022 Midterm elections study |
author |
Afonso, Francisco Rodrigo Fernandes |
author_facet |
Afonso, Francisco Rodrigo Fernandes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rita, Paulo Miguel Rasquinho Ferreira António, Nuno Miguel da Conceição RUN |
dc.contributor.author.fl_str_mv |
Afonso, Francisco Rodrigo Fernandes |
dc.subject.por.fl_str_mv |
Machine Learning Predictive Modelling Topic Analysis Political Communication Social Media Political Marketing Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Machine Learning Predictive Modelling Topic Analysis Political Communication Social Media Political Marketing Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Marketing Intelligence |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10-24 2023-10-24T00:00:00Z 2026-10-24T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/159896 TID:203385675 |
url |
http://hdl.handle.net/10362/159896 |
identifier_str_mv |
TID:203385675 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138159567568896 |