Aplicação técnicas aprendizagem automática no cancro da mama

Detalhes bibliográficos
Autor(a) principal: Santos, José Carlos Cordeiro Andrade
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/24947
Resumo: O cancro da mama continua atualmente a ser um importante problema de saúde pública a nível internacional e nacional pelo que a problemática da sua abordagem continua a ter todo o interesse. Em Portugal, anualmente são detetados cerca de 7.000 novos casos de cancro da mama, e 1.800 mulheres morrem com esta doença. De acordo com a Norma da Direção-Geral da Saúde para abordagem imagiológica da mama feminina, todas as mulheres assintomáticas com idade compreendida entre 50 e 69 anos, devem realizar uma mamografia de rastreio a cada dois anos. Na presença de alterações morfológicas ou em mulheres com risco moderado a elevado de cancro da mama, o médico assistente pode sugerir antecipar a realização da mamografia e complementar a investigação diagnóstica com os métodos que achar necessários. Se o cancro for detetado precocemente, a probabilidade de o tratamento ser eficaz e bem-sucedido é muito mais elevada. A ressonância magnética é um exame de alta sensibilidade e especificidade moderada, sugerida em pacientes jovens, com aumento substancial do risco, i.e., que apresentam predisposição genética ou história familiar da doença. Este exame utiliza uma tecnologia à base de ondas de radiofrequência num forte campo magnético a fim de obter imagens mais detalhadas dos tecidos internos da mama, no entanto, o seu uso é limitado pela indisponibilidade (imediata) comparada com outros exames e preço associado e contraindicado em pessoas com claustrofobia, dispositivos metálicos como pacemakers ou próteses ou reações ao meio de contraste. Assim, esta tese tem como objetivo desenvolver uma ferramenta de aprendizagem automática com recurso a Redes Adversariais Generativas Cíclicas, capaz de converter uma imagem de mamografia numa semelhante ao produto de uma ressonância magnética, com o intuito de proporcionar uma melhor perceção do campo cirúrgico e aumentar os ganhos em saúde. O conjunto de dados foi cedido pelo Centro Hospitalar Universitário de São João e continha volumes de cortes transversais sucessivos de mamas. Neste caso, o corte seccional com área transversal máxima era o único com interesse para estudo, por isso, extraímos todas as localizações dos cortes para obter os cortes mediais respetivos das mamas. As Redes Adversariais Generativas são pares de sistemas de Inteligência Artificial treinados para criar conteúdo e realizar tarefas mais rapidamente do que um único sistema. Nesta tese, estas realizam a tradução para uma imagem com base noutra singular não emparelhada, ou seja, uma imagem semelhante ao produto de uma ressonância magnética com base numa mamografia, sem imagem de ressonância magnética correspondente. As ferramentas métricas de Medida do Índice de Similaridade Estrutural e de Relação Sinal-Ruído de Pico foram usadas para avaliar a qualidade da imagem sintetizada em relação à imagem real. Com o valor de 0.69667, o valor obtido pela medida do índice de similaridade estrutural indica alta similaridade da imagem criada com a de referência. Quanto à relação sinal-ruído de pico obtida de 31.805 dB, usada para quantificar a qualidade da imagem reconstruída a partir de uma imagem original que sofreu compressão, encontra-se dentro do intervalo de valores típicos. Embora as ferramentas métricas forneçam um resultado quantitativo do desempenho, a melhor resposta que obtivemos foi visual. As imagens sintéticas obtidas apresentam uma aparência visualmente realista, embora seja possível detetar nestes alguns artefactos, devido à diferente forma de captação de imagem pelos diferentes exames e definição inferior dos exames originais usados como base em comparação com a ressonância magnética. Em conclusão, a partir de um conjunto de dados com 57 imagens obtidas por mamografia, em perfil cefalo-caudal, foi possível gerar imagens sintéticas da estrutura mamária semelhantes ao produto da ressonância magnética baseadas em mamografia implementando e testando modelos de rede adversarial generativa, usando dados não emparelhados, como demonstrado pelas diversas métricas e verificações gráficas.
id RCAP_c1660458c9e2c6b818ef3eb1622bdde4
oai_identifier_str oai:recipp.ipp.pt:10400.22/24947
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Aplicação técnicas aprendizagem automática no cancro da mamaDeep learning techniques in breast cancer diagnosisMammogramMagnetic Resonance ImagingGenerative Adversarial NetworksDomínio/Área Científica::Engenharia e TecnologiaO cancro da mama continua atualmente a ser um importante problema de saúde pública a nível internacional e nacional pelo que a problemática da sua abordagem continua a ter todo o interesse. Em Portugal, anualmente são detetados cerca de 7.000 novos casos de cancro da mama, e 1.800 mulheres morrem com esta doença. De acordo com a Norma da Direção-Geral da Saúde para abordagem imagiológica da mama feminina, todas as mulheres assintomáticas com idade compreendida entre 50 e 69 anos, devem realizar uma mamografia de rastreio a cada dois anos. Na presença de alterações morfológicas ou em mulheres com risco moderado a elevado de cancro da mama, o médico assistente pode sugerir antecipar a realização da mamografia e complementar a investigação diagnóstica com os métodos que achar necessários. Se o cancro for detetado precocemente, a probabilidade de o tratamento ser eficaz e bem-sucedido é muito mais elevada. A ressonância magnética é um exame de alta sensibilidade e especificidade moderada, sugerida em pacientes jovens, com aumento substancial do risco, i.e., que apresentam predisposição genética ou história familiar da doença. Este exame utiliza uma tecnologia à base de ondas de radiofrequência num forte campo magnético a fim de obter imagens mais detalhadas dos tecidos internos da mama, no entanto, o seu uso é limitado pela indisponibilidade (imediata) comparada com outros exames e preço associado e contraindicado em pessoas com claustrofobia, dispositivos metálicos como pacemakers ou próteses ou reações ao meio de contraste. Assim, esta tese tem como objetivo desenvolver uma ferramenta de aprendizagem automática com recurso a Redes Adversariais Generativas Cíclicas, capaz de converter uma imagem de mamografia numa semelhante ao produto de uma ressonância magnética, com o intuito de proporcionar uma melhor perceção do campo cirúrgico e aumentar os ganhos em saúde. O conjunto de dados foi cedido pelo Centro Hospitalar Universitário de São João e continha volumes de cortes transversais sucessivos de mamas. Neste caso, o corte seccional com área transversal máxima era o único com interesse para estudo, por isso, extraímos todas as localizações dos cortes para obter os cortes mediais respetivos das mamas. As Redes Adversariais Generativas são pares de sistemas de Inteligência Artificial treinados para criar conteúdo e realizar tarefas mais rapidamente do que um único sistema. Nesta tese, estas realizam a tradução para uma imagem com base noutra singular não emparelhada, ou seja, uma imagem semelhante ao produto de uma ressonância magnética com base numa mamografia, sem imagem de ressonância magnética correspondente. As ferramentas métricas de Medida do Índice de Similaridade Estrutural e de Relação Sinal-Ruído de Pico foram usadas para avaliar a qualidade da imagem sintetizada em relação à imagem real. Com o valor de 0.69667, o valor obtido pela medida do índice de similaridade estrutural indica alta similaridade da imagem criada com a de referência. Quanto à relação sinal-ruído de pico obtida de 31.805 dB, usada para quantificar a qualidade da imagem reconstruída a partir de uma imagem original que sofreu compressão, encontra-se dentro do intervalo de valores típicos. Embora as ferramentas métricas forneçam um resultado quantitativo do desempenho, a melhor resposta que obtivemos foi visual. As imagens sintéticas obtidas apresentam uma aparência visualmente realista, embora seja possível detetar nestes alguns artefactos, devido à diferente forma de captação de imagem pelos diferentes exames e definição inferior dos exames originais usados como base em comparação com a ressonância magnética. Em conclusão, a partir de um conjunto de dados com 57 imagens obtidas por mamografia, em perfil cefalo-caudal, foi possível gerar imagens sintéticas da estrutura mamária semelhantes ao produto da ressonância magnética baseadas em mamografia implementando e testando modelos de rede adversarial generativa, usando dados não emparelhados, como demonstrado pelas diversas métricas e verificações gráficas.Breast cancer has become a serious public health problem world-wide. According to European standards, all asymptomatic women aged 50 years and over should have breast cancer screenings, i.e., a mammogram. Magnetic resonance imaging produces extremely detailed pictures, facilitating a more accurate diagnosis. However, its’ use is limited. Thus, this thesis aims to implement an efficient deep learning method using Cycle-consistent Generative Adversarial Networks to synthesize artificial thoracic magnetic resonance imaging exams from mammograms, with the purpose of providing a better perception of the surgical field and increasing health gains. The dataset was provided by Centro Hospitalar Universitário de São João and contained successive cross-sections of breast volumes. Structured Similarity Indexing Method and Peak Signal to Noise-Ratio were the reference-based metrics used to evaluate the quality of the synthesized images. The structured similarity indexing method value rounds up to 0.69667, meaning the output images present high similarity to the reference one. The peak signal to noise-ratio equals 31.805 dB, which falls within the typical values’ interval. Via perceptual study, we consider the output images to have a visually realistic appearance, when compared to real ones. In conclusion, we were able to generate synthetic magnetic resonance-like images based on mammogram by implementing and testing generative adversarial network models, using unpaired data, as demonstrated by the several metrics and graphical checks. Although, it is worth noting that the product images have visually detectable artifacts and lack the definition of real exams.Marreiros, Maria Goreti CarvalhoRepositório Científico do Instituto Politécnico do PortoSantos, José Carlos Cordeiro Andrade2024-02-06T09:05:15Z2023-05-152023-05-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/24947TID:203514505enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-14T01:46:17Zoai:recipp.ipp.pt:10400.22/24947Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:36:36.744578Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Aplicação técnicas aprendizagem automática no cancro da mama
Deep learning techniques in breast cancer diagnosis
title Aplicação técnicas aprendizagem automática no cancro da mama
spellingShingle Aplicação técnicas aprendizagem automática no cancro da mama
Santos, José Carlos Cordeiro Andrade
Mammogram
Magnetic Resonance Imaging
Generative Adversarial Networks
Domínio/Área Científica::Engenharia e Tecnologia
title_short Aplicação técnicas aprendizagem automática no cancro da mama
title_full Aplicação técnicas aprendizagem automática no cancro da mama
title_fullStr Aplicação técnicas aprendizagem automática no cancro da mama
title_full_unstemmed Aplicação técnicas aprendizagem automática no cancro da mama
title_sort Aplicação técnicas aprendizagem automática no cancro da mama
author Santos, José Carlos Cordeiro Andrade
author_facet Santos, José Carlos Cordeiro Andrade
author_role author
dc.contributor.none.fl_str_mv Marreiros, Maria Goreti Carvalho
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Santos, José Carlos Cordeiro Andrade
dc.subject.por.fl_str_mv Mammogram
Magnetic Resonance Imaging
Generative Adversarial Networks
Domínio/Área Científica::Engenharia e Tecnologia
topic Mammogram
Magnetic Resonance Imaging
Generative Adversarial Networks
Domínio/Área Científica::Engenharia e Tecnologia
description O cancro da mama continua atualmente a ser um importante problema de saúde pública a nível internacional e nacional pelo que a problemática da sua abordagem continua a ter todo o interesse. Em Portugal, anualmente são detetados cerca de 7.000 novos casos de cancro da mama, e 1.800 mulheres morrem com esta doença. De acordo com a Norma da Direção-Geral da Saúde para abordagem imagiológica da mama feminina, todas as mulheres assintomáticas com idade compreendida entre 50 e 69 anos, devem realizar uma mamografia de rastreio a cada dois anos. Na presença de alterações morfológicas ou em mulheres com risco moderado a elevado de cancro da mama, o médico assistente pode sugerir antecipar a realização da mamografia e complementar a investigação diagnóstica com os métodos que achar necessários. Se o cancro for detetado precocemente, a probabilidade de o tratamento ser eficaz e bem-sucedido é muito mais elevada. A ressonância magnética é um exame de alta sensibilidade e especificidade moderada, sugerida em pacientes jovens, com aumento substancial do risco, i.e., que apresentam predisposição genética ou história familiar da doença. Este exame utiliza uma tecnologia à base de ondas de radiofrequência num forte campo magnético a fim de obter imagens mais detalhadas dos tecidos internos da mama, no entanto, o seu uso é limitado pela indisponibilidade (imediata) comparada com outros exames e preço associado e contraindicado em pessoas com claustrofobia, dispositivos metálicos como pacemakers ou próteses ou reações ao meio de contraste. Assim, esta tese tem como objetivo desenvolver uma ferramenta de aprendizagem automática com recurso a Redes Adversariais Generativas Cíclicas, capaz de converter uma imagem de mamografia numa semelhante ao produto de uma ressonância magnética, com o intuito de proporcionar uma melhor perceção do campo cirúrgico e aumentar os ganhos em saúde. O conjunto de dados foi cedido pelo Centro Hospitalar Universitário de São João e continha volumes de cortes transversais sucessivos de mamas. Neste caso, o corte seccional com área transversal máxima era o único com interesse para estudo, por isso, extraímos todas as localizações dos cortes para obter os cortes mediais respetivos das mamas. As Redes Adversariais Generativas são pares de sistemas de Inteligência Artificial treinados para criar conteúdo e realizar tarefas mais rapidamente do que um único sistema. Nesta tese, estas realizam a tradução para uma imagem com base noutra singular não emparelhada, ou seja, uma imagem semelhante ao produto de uma ressonância magnética com base numa mamografia, sem imagem de ressonância magnética correspondente. As ferramentas métricas de Medida do Índice de Similaridade Estrutural e de Relação Sinal-Ruído de Pico foram usadas para avaliar a qualidade da imagem sintetizada em relação à imagem real. Com o valor de 0.69667, o valor obtido pela medida do índice de similaridade estrutural indica alta similaridade da imagem criada com a de referência. Quanto à relação sinal-ruído de pico obtida de 31.805 dB, usada para quantificar a qualidade da imagem reconstruída a partir de uma imagem original que sofreu compressão, encontra-se dentro do intervalo de valores típicos. Embora as ferramentas métricas forneçam um resultado quantitativo do desempenho, a melhor resposta que obtivemos foi visual. As imagens sintéticas obtidas apresentam uma aparência visualmente realista, embora seja possível detetar nestes alguns artefactos, devido à diferente forma de captação de imagem pelos diferentes exames e definição inferior dos exames originais usados como base em comparação com a ressonância magnética. Em conclusão, a partir de um conjunto de dados com 57 imagens obtidas por mamografia, em perfil cefalo-caudal, foi possível gerar imagens sintéticas da estrutura mamária semelhantes ao produto da ressonância magnética baseadas em mamografia implementando e testando modelos de rede adversarial generativa, usando dados não emparelhados, como demonstrado pelas diversas métricas e verificações gráficas.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-15
2023-05-15T00:00:00Z
2024-02-06T09:05:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/24947
TID:203514505
url http://hdl.handle.net/10400.22/24947
identifier_str_mv TID:203514505
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137417576316928