Aplicação técnicas aprendizagem automática no cancro da mama
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/24947 |
Resumo: | O cancro da mama continua atualmente a ser um importante problema de saúde pública a nível internacional e nacional pelo que a problemática da sua abordagem continua a ter todo o interesse. Em Portugal, anualmente são detetados cerca de 7.000 novos casos de cancro da mama, e 1.800 mulheres morrem com esta doença. De acordo com a Norma da Direção-Geral da Saúde para abordagem imagiológica da mama feminina, todas as mulheres assintomáticas com idade compreendida entre 50 e 69 anos, devem realizar uma mamografia de rastreio a cada dois anos. Na presença de alterações morfológicas ou em mulheres com risco moderado a elevado de cancro da mama, o médico assistente pode sugerir antecipar a realização da mamografia e complementar a investigação diagnóstica com os métodos que achar necessários. Se o cancro for detetado precocemente, a probabilidade de o tratamento ser eficaz e bem-sucedido é muito mais elevada. A ressonância magnética é um exame de alta sensibilidade e especificidade moderada, sugerida em pacientes jovens, com aumento substancial do risco, i.e., que apresentam predisposição genética ou história familiar da doença. Este exame utiliza uma tecnologia à base de ondas de radiofrequência num forte campo magnético a fim de obter imagens mais detalhadas dos tecidos internos da mama, no entanto, o seu uso é limitado pela indisponibilidade (imediata) comparada com outros exames e preço associado e contraindicado em pessoas com claustrofobia, dispositivos metálicos como pacemakers ou próteses ou reações ao meio de contraste. Assim, esta tese tem como objetivo desenvolver uma ferramenta de aprendizagem automática com recurso a Redes Adversariais Generativas Cíclicas, capaz de converter uma imagem de mamografia numa semelhante ao produto de uma ressonância magnética, com o intuito de proporcionar uma melhor perceção do campo cirúrgico e aumentar os ganhos em saúde. O conjunto de dados foi cedido pelo Centro Hospitalar Universitário de São João e continha volumes de cortes transversais sucessivos de mamas. Neste caso, o corte seccional com área transversal máxima era o único com interesse para estudo, por isso, extraímos todas as localizações dos cortes para obter os cortes mediais respetivos das mamas. As Redes Adversariais Generativas são pares de sistemas de Inteligência Artificial treinados para criar conteúdo e realizar tarefas mais rapidamente do que um único sistema. Nesta tese, estas realizam a tradução para uma imagem com base noutra singular não emparelhada, ou seja, uma imagem semelhante ao produto de uma ressonância magnética com base numa mamografia, sem imagem de ressonância magnética correspondente. As ferramentas métricas de Medida do Índice de Similaridade Estrutural e de Relação Sinal-Ruído de Pico foram usadas para avaliar a qualidade da imagem sintetizada em relação à imagem real. Com o valor de 0.69667, o valor obtido pela medida do índice de similaridade estrutural indica alta similaridade da imagem criada com a de referência. Quanto à relação sinal-ruído de pico obtida de 31.805 dB, usada para quantificar a qualidade da imagem reconstruída a partir de uma imagem original que sofreu compressão, encontra-se dentro do intervalo de valores típicos. Embora as ferramentas métricas forneçam um resultado quantitativo do desempenho, a melhor resposta que obtivemos foi visual. As imagens sintéticas obtidas apresentam uma aparência visualmente realista, embora seja possível detetar nestes alguns artefactos, devido à diferente forma de captação de imagem pelos diferentes exames e definição inferior dos exames originais usados como base em comparação com a ressonância magnética. Em conclusão, a partir de um conjunto de dados com 57 imagens obtidas por mamografia, em perfil cefalo-caudal, foi possível gerar imagens sintéticas da estrutura mamária semelhantes ao produto da ressonância magnética baseadas em mamografia implementando e testando modelos de rede adversarial generativa, usando dados não emparelhados, como demonstrado pelas diversas métricas e verificações gráficas. |
id |
RCAP_c1660458c9e2c6b818ef3eb1622bdde4 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/24947 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Aplicação técnicas aprendizagem automática no cancro da mamaDeep learning techniques in breast cancer diagnosisMammogramMagnetic Resonance ImagingGenerative Adversarial NetworksDomínio/Área Científica::Engenharia e TecnologiaO cancro da mama continua atualmente a ser um importante problema de saúde pública a nível internacional e nacional pelo que a problemática da sua abordagem continua a ter todo o interesse. Em Portugal, anualmente são detetados cerca de 7.000 novos casos de cancro da mama, e 1.800 mulheres morrem com esta doença. De acordo com a Norma da Direção-Geral da Saúde para abordagem imagiológica da mama feminina, todas as mulheres assintomáticas com idade compreendida entre 50 e 69 anos, devem realizar uma mamografia de rastreio a cada dois anos. Na presença de alterações morfológicas ou em mulheres com risco moderado a elevado de cancro da mama, o médico assistente pode sugerir antecipar a realização da mamografia e complementar a investigação diagnóstica com os métodos que achar necessários. Se o cancro for detetado precocemente, a probabilidade de o tratamento ser eficaz e bem-sucedido é muito mais elevada. A ressonância magnética é um exame de alta sensibilidade e especificidade moderada, sugerida em pacientes jovens, com aumento substancial do risco, i.e., que apresentam predisposição genética ou história familiar da doença. Este exame utiliza uma tecnologia à base de ondas de radiofrequência num forte campo magnético a fim de obter imagens mais detalhadas dos tecidos internos da mama, no entanto, o seu uso é limitado pela indisponibilidade (imediata) comparada com outros exames e preço associado e contraindicado em pessoas com claustrofobia, dispositivos metálicos como pacemakers ou próteses ou reações ao meio de contraste. Assim, esta tese tem como objetivo desenvolver uma ferramenta de aprendizagem automática com recurso a Redes Adversariais Generativas Cíclicas, capaz de converter uma imagem de mamografia numa semelhante ao produto de uma ressonância magnética, com o intuito de proporcionar uma melhor perceção do campo cirúrgico e aumentar os ganhos em saúde. O conjunto de dados foi cedido pelo Centro Hospitalar Universitário de São João e continha volumes de cortes transversais sucessivos de mamas. Neste caso, o corte seccional com área transversal máxima era o único com interesse para estudo, por isso, extraímos todas as localizações dos cortes para obter os cortes mediais respetivos das mamas. As Redes Adversariais Generativas são pares de sistemas de Inteligência Artificial treinados para criar conteúdo e realizar tarefas mais rapidamente do que um único sistema. Nesta tese, estas realizam a tradução para uma imagem com base noutra singular não emparelhada, ou seja, uma imagem semelhante ao produto de uma ressonância magnética com base numa mamografia, sem imagem de ressonância magnética correspondente. As ferramentas métricas de Medida do Índice de Similaridade Estrutural e de Relação Sinal-Ruído de Pico foram usadas para avaliar a qualidade da imagem sintetizada em relação à imagem real. Com o valor de 0.69667, o valor obtido pela medida do índice de similaridade estrutural indica alta similaridade da imagem criada com a de referência. Quanto à relação sinal-ruído de pico obtida de 31.805 dB, usada para quantificar a qualidade da imagem reconstruída a partir de uma imagem original que sofreu compressão, encontra-se dentro do intervalo de valores típicos. Embora as ferramentas métricas forneçam um resultado quantitativo do desempenho, a melhor resposta que obtivemos foi visual. As imagens sintéticas obtidas apresentam uma aparência visualmente realista, embora seja possível detetar nestes alguns artefactos, devido à diferente forma de captação de imagem pelos diferentes exames e definição inferior dos exames originais usados como base em comparação com a ressonância magnética. Em conclusão, a partir de um conjunto de dados com 57 imagens obtidas por mamografia, em perfil cefalo-caudal, foi possível gerar imagens sintéticas da estrutura mamária semelhantes ao produto da ressonância magnética baseadas em mamografia implementando e testando modelos de rede adversarial generativa, usando dados não emparelhados, como demonstrado pelas diversas métricas e verificações gráficas.Breast cancer has become a serious public health problem world-wide. According to European standards, all asymptomatic women aged 50 years and over should have breast cancer screenings, i.e., a mammogram. Magnetic resonance imaging produces extremely detailed pictures, facilitating a more accurate diagnosis. However, its’ use is limited. Thus, this thesis aims to implement an efficient deep learning method using Cycle-consistent Generative Adversarial Networks to synthesize artificial thoracic magnetic resonance imaging exams from mammograms, with the purpose of providing a better perception of the surgical field and increasing health gains. The dataset was provided by Centro Hospitalar Universitário de São João and contained successive cross-sections of breast volumes. Structured Similarity Indexing Method and Peak Signal to Noise-Ratio were the reference-based metrics used to evaluate the quality of the synthesized images. The structured similarity indexing method value rounds up to 0.69667, meaning the output images present high similarity to the reference one. The peak signal to noise-ratio equals 31.805 dB, which falls within the typical values’ interval. Via perceptual study, we consider the output images to have a visually realistic appearance, when compared to real ones. In conclusion, we were able to generate synthetic magnetic resonance-like images based on mammogram by implementing and testing generative adversarial network models, using unpaired data, as demonstrated by the several metrics and graphical checks. Although, it is worth noting that the product images have visually detectable artifacts and lack the definition of real exams.Marreiros, Maria Goreti CarvalhoRepositório Científico do Instituto Politécnico do PortoSantos, José Carlos Cordeiro Andrade2024-02-06T09:05:15Z2023-05-152023-05-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/24947TID:203514505enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-14T01:46:17Zoai:recipp.ipp.pt:10400.22/24947Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:36:36.744578Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Aplicação técnicas aprendizagem automática no cancro da mama Deep learning techniques in breast cancer diagnosis |
title |
Aplicação técnicas aprendizagem automática no cancro da mama |
spellingShingle |
Aplicação técnicas aprendizagem automática no cancro da mama Santos, José Carlos Cordeiro Andrade Mammogram Magnetic Resonance Imaging Generative Adversarial Networks Domínio/Área Científica::Engenharia e Tecnologia |
title_short |
Aplicação técnicas aprendizagem automática no cancro da mama |
title_full |
Aplicação técnicas aprendizagem automática no cancro da mama |
title_fullStr |
Aplicação técnicas aprendizagem automática no cancro da mama |
title_full_unstemmed |
Aplicação técnicas aprendizagem automática no cancro da mama |
title_sort |
Aplicação técnicas aprendizagem automática no cancro da mama |
author |
Santos, José Carlos Cordeiro Andrade |
author_facet |
Santos, José Carlos Cordeiro Andrade |
author_role |
author |
dc.contributor.none.fl_str_mv |
Marreiros, Maria Goreti Carvalho Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Santos, José Carlos Cordeiro Andrade |
dc.subject.por.fl_str_mv |
Mammogram Magnetic Resonance Imaging Generative Adversarial Networks Domínio/Área Científica::Engenharia e Tecnologia |
topic |
Mammogram Magnetic Resonance Imaging Generative Adversarial Networks Domínio/Área Científica::Engenharia e Tecnologia |
description |
O cancro da mama continua atualmente a ser um importante problema de saúde pública a nível internacional e nacional pelo que a problemática da sua abordagem continua a ter todo o interesse. Em Portugal, anualmente são detetados cerca de 7.000 novos casos de cancro da mama, e 1.800 mulheres morrem com esta doença. De acordo com a Norma da Direção-Geral da Saúde para abordagem imagiológica da mama feminina, todas as mulheres assintomáticas com idade compreendida entre 50 e 69 anos, devem realizar uma mamografia de rastreio a cada dois anos. Na presença de alterações morfológicas ou em mulheres com risco moderado a elevado de cancro da mama, o médico assistente pode sugerir antecipar a realização da mamografia e complementar a investigação diagnóstica com os métodos que achar necessários. Se o cancro for detetado precocemente, a probabilidade de o tratamento ser eficaz e bem-sucedido é muito mais elevada. A ressonância magnética é um exame de alta sensibilidade e especificidade moderada, sugerida em pacientes jovens, com aumento substancial do risco, i.e., que apresentam predisposição genética ou história familiar da doença. Este exame utiliza uma tecnologia à base de ondas de radiofrequência num forte campo magnético a fim de obter imagens mais detalhadas dos tecidos internos da mama, no entanto, o seu uso é limitado pela indisponibilidade (imediata) comparada com outros exames e preço associado e contraindicado em pessoas com claustrofobia, dispositivos metálicos como pacemakers ou próteses ou reações ao meio de contraste. Assim, esta tese tem como objetivo desenvolver uma ferramenta de aprendizagem automática com recurso a Redes Adversariais Generativas Cíclicas, capaz de converter uma imagem de mamografia numa semelhante ao produto de uma ressonância magnética, com o intuito de proporcionar uma melhor perceção do campo cirúrgico e aumentar os ganhos em saúde. O conjunto de dados foi cedido pelo Centro Hospitalar Universitário de São João e continha volumes de cortes transversais sucessivos de mamas. Neste caso, o corte seccional com área transversal máxima era o único com interesse para estudo, por isso, extraímos todas as localizações dos cortes para obter os cortes mediais respetivos das mamas. As Redes Adversariais Generativas são pares de sistemas de Inteligência Artificial treinados para criar conteúdo e realizar tarefas mais rapidamente do que um único sistema. Nesta tese, estas realizam a tradução para uma imagem com base noutra singular não emparelhada, ou seja, uma imagem semelhante ao produto de uma ressonância magnética com base numa mamografia, sem imagem de ressonância magnética correspondente. As ferramentas métricas de Medida do Índice de Similaridade Estrutural e de Relação Sinal-Ruído de Pico foram usadas para avaliar a qualidade da imagem sintetizada em relação à imagem real. Com o valor de 0.69667, o valor obtido pela medida do índice de similaridade estrutural indica alta similaridade da imagem criada com a de referência. Quanto à relação sinal-ruído de pico obtida de 31.805 dB, usada para quantificar a qualidade da imagem reconstruída a partir de uma imagem original que sofreu compressão, encontra-se dentro do intervalo de valores típicos. Embora as ferramentas métricas forneçam um resultado quantitativo do desempenho, a melhor resposta que obtivemos foi visual. As imagens sintéticas obtidas apresentam uma aparência visualmente realista, embora seja possível detetar nestes alguns artefactos, devido à diferente forma de captação de imagem pelos diferentes exames e definição inferior dos exames originais usados como base em comparação com a ressonância magnética. Em conclusão, a partir de um conjunto de dados com 57 imagens obtidas por mamografia, em perfil cefalo-caudal, foi possível gerar imagens sintéticas da estrutura mamária semelhantes ao produto da ressonância magnética baseadas em mamografia implementando e testando modelos de rede adversarial generativa, usando dados não emparelhados, como demonstrado pelas diversas métricas e verificações gráficas. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05-15 2023-05-15T00:00:00Z 2024-02-06T09:05:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/24947 TID:203514505 |
url |
http://hdl.handle.net/10400.22/24947 |
identifier_str_mv |
TID:203514505 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137417576316928 |