Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/24649 |
Resumo: | The study of mechanical systems on Lie algebroids permits an understanding of the dynamics described by a Lagrangian or Hamiltonian function for a wide range of mechanical systems in a unified framework. Systems defined in tangent bundles, Lie algebras, principal bundles, reduced systems, and constrained are included in such description. In this paper, we investigate how to derive the dynamics associated with a Lagrangian system defined on the set of admissible elements of a given Lie algebroid using Tulczyjew’s triple on Lie algebroids and constructing a Lagrangian Lie subalgebroid of a symplectic Lie algebroid, by building on the geometric formalism for mechanics on Lie algebroids developed by M. de León, J.C. Marrero and E. Martínez on “Lagrangian submanifolds and dynamics on Lie algebroids” |
id |
RCAP_c18b96dd9ee02bb8e9fd3a7686c696a1 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/24649 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroidsHigher order mechanicsLagrangian mechanicsLagrangian submanifoldsMechanics on Lie algebroidsThe study of mechanical systems on Lie algebroids permits an understanding of the dynamics described by a Lagrangian or Hamiltonian function for a wide range of mechanical systems in a unified framework. Systems defined in tangent bundles, Lie algebras, principal bundles, reduced systems, and constrained are included in such description. In this paper, we investigate how to derive the dynamics associated with a Lagrangian system defined on the set of admissible elements of a given Lie algebroid using Tulczyjew’s triple on Lie algebroids and constructing a Lagrangian Lie subalgebroid of a symplectic Lie algebroid, by building on the geometric formalism for mechanics on Lie algebroids developed by M. de León, J.C. Marrero and E. Martínez on “Lagrangian submanifolds and dynamics on Lie algebroids”Springer Verlag2019-04-01T00:00:00Z2018-04-01T00:00:00Z2018-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/24649eng1660-544610.1007/s00009-018-1108-xAbrunheiro, LígiaColombo, Leonardoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:48:00Zoai:ria.ua.pt:10773/24649Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:07.174855Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids |
title |
Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids |
spellingShingle |
Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids Abrunheiro, Lígia Higher order mechanics Lagrangian mechanics Lagrangian submanifolds Mechanics on Lie algebroids |
title_short |
Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids |
title_full |
Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids |
title_fullStr |
Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids |
title_full_unstemmed |
Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids |
title_sort |
Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids |
author |
Abrunheiro, Lígia |
author_facet |
Abrunheiro, Lígia Colombo, Leonardo |
author_role |
author |
author2 |
Colombo, Leonardo |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Abrunheiro, Lígia Colombo, Leonardo |
dc.subject.por.fl_str_mv |
Higher order mechanics Lagrangian mechanics Lagrangian submanifolds Mechanics on Lie algebroids |
topic |
Higher order mechanics Lagrangian mechanics Lagrangian submanifolds Mechanics on Lie algebroids |
description |
The study of mechanical systems on Lie algebroids permits an understanding of the dynamics described by a Lagrangian or Hamiltonian function for a wide range of mechanical systems in a unified framework. Systems defined in tangent bundles, Lie algebras, principal bundles, reduced systems, and constrained are included in such description. In this paper, we investigate how to derive the dynamics associated with a Lagrangian system defined on the set of admissible elements of a given Lie algebroid using Tulczyjew’s triple on Lie algebroids and constructing a Lagrangian Lie subalgebroid of a symplectic Lie algebroid, by building on the geometric formalism for mechanics on Lie algebroids developed by M. de León, J.C. Marrero and E. Martínez on “Lagrangian submanifolds and dynamics on Lie algebroids” |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-01T00:00:00Z 2018-04-01 2019-04-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/24649 |
url |
http://hdl.handle.net/10773/24649 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1660-5446 10.1007/s00009-018-1108-x |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137635488235520 |