Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids

Detalhes bibliográficos
Autor(a) principal: Abrunheiro, Lígia
Data de Publicação: 2018
Outros Autores: Colombo, Leonardo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/24649
Resumo: The study of mechanical systems on Lie algebroids permits an understanding of the dynamics described by a Lagrangian or Hamiltonian function for a wide range of mechanical systems in a unified framework. Systems defined in tangent bundles, Lie algebras, principal bundles, reduced systems, and constrained are included in such description. In this paper, we investigate how to derive the dynamics associated with a Lagrangian system defined on the set of admissible elements of a given Lie algebroid using Tulczyjew’s triple on Lie algebroids and constructing a Lagrangian Lie subalgebroid of a symplectic Lie algebroid, by building on the geometric formalism for mechanics on Lie algebroids developed by M. de León, J.C. Marrero and E. Martínez on “Lagrangian submanifolds and dynamics on Lie algebroids”
id RCAP_c18b96dd9ee02bb8e9fd3a7686c696a1
oai_identifier_str oai:ria.ua.pt:10773/24649
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroidsHigher order mechanicsLagrangian mechanicsLagrangian submanifoldsMechanics on Lie algebroidsThe study of mechanical systems on Lie algebroids permits an understanding of the dynamics described by a Lagrangian or Hamiltonian function for a wide range of mechanical systems in a unified framework. Systems defined in tangent bundles, Lie algebras, principal bundles, reduced systems, and constrained are included in such description. In this paper, we investigate how to derive the dynamics associated with a Lagrangian system defined on the set of admissible elements of a given Lie algebroid using Tulczyjew’s triple on Lie algebroids and constructing a Lagrangian Lie subalgebroid of a symplectic Lie algebroid, by building on the geometric formalism for mechanics on Lie algebroids developed by M. de León, J.C. Marrero and E. Martínez on “Lagrangian submanifolds and dynamics on Lie algebroids”Springer Verlag2019-04-01T00:00:00Z2018-04-01T00:00:00Z2018-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/24649eng1660-544610.1007/s00009-018-1108-xAbrunheiro, LígiaColombo, Leonardoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:48:00Zoai:ria.ua.pt:10773/24649Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:07.174855Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids
title Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids
spellingShingle Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids
Abrunheiro, Lígia
Higher order mechanics
Lagrangian mechanics
Lagrangian submanifolds
Mechanics on Lie algebroids
title_short Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids
title_full Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids
title_fullStr Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids
title_full_unstemmed Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids
title_sort Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids
author Abrunheiro, Lígia
author_facet Abrunheiro, Lígia
Colombo, Leonardo
author_role author
author2 Colombo, Leonardo
author2_role author
dc.contributor.author.fl_str_mv Abrunheiro, Lígia
Colombo, Leonardo
dc.subject.por.fl_str_mv Higher order mechanics
Lagrangian mechanics
Lagrangian submanifolds
Mechanics on Lie algebroids
topic Higher order mechanics
Lagrangian mechanics
Lagrangian submanifolds
Mechanics on Lie algebroids
description The study of mechanical systems on Lie algebroids permits an understanding of the dynamics described by a Lagrangian or Hamiltonian function for a wide range of mechanical systems in a unified framework. Systems defined in tangent bundles, Lie algebras, principal bundles, reduced systems, and constrained are included in such description. In this paper, we investigate how to derive the dynamics associated with a Lagrangian system defined on the set of admissible elements of a given Lie algebroid using Tulczyjew’s triple on Lie algebroids and constructing a Lagrangian Lie subalgebroid of a symplectic Lie algebroid, by building on the geometric formalism for mechanics on Lie algebroids developed by M. de León, J.C. Marrero and E. Martínez on “Lagrangian submanifolds and dynamics on Lie algebroids”
publishDate 2018
dc.date.none.fl_str_mv 2018-04-01T00:00:00Z
2018-04-01
2019-04-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/24649
url http://hdl.handle.net/10773/24649
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1660-5446
10.1007/s00009-018-1108-x
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137635488235520