Reduction of Lagrangian mechanics on Lie algebroids
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/4384 https://doi.org/10.1016/j.geomphys.2006.08.001 |
Resumo: | We prove that if a surjective submersion which is a homomorphism of Lie algebroids is given, then there exists another homomorphism between the corresponding prolonged Lie algebroids and a relation between the dynamics on these Lie algebroid prolongations is established. We also propose a geometric reduction method for dynamics on Lie algebroids defined by a Lagrangian and the method is applied to regular Lagrangian systems with nonholonomic constraints. |
id |
RCAP_16722bab36f2a8ca9bb61341fc816653 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/4384 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Reduction of Lagrangian mechanics on Lie algebroidsReductionLie algebroidsLagrangian mechanicsWe prove that if a surjective submersion which is a homomorphism of Lie algebroids is given, then there exists another homomorphism between the corresponding prolonged Lie algebroids and a relation between the dynamics on these Lie algebroid prolongations is established. We also propose a geometric reduction method for dynamics on Lie algebroids defined by a Lagrangian and the method is applied to regular Lagrangian systems with nonholonomic constraints.http://www.sciencedirect.com/science/article/B6TJ8-4KSVG2C-1/1/4337b61b8426a38084b5017747203e712007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4384http://hdl.handle.net/10316/4384https://doi.org/10.1016/j.geomphys.2006.08.001engJournal of Geometry and Physics. 57:3 (2007) 977-990Cariñena, José F.Costa, Joana M. Nunes daSantos, Patríciainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:49:06Zoai:estudogeral.uc.pt:10316/4384Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:59:51.045229Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Reduction of Lagrangian mechanics on Lie algebroids |
title |
Reduction of Lagrangian mechanics on Lie algebroids |
spellingShingle |
Reduction of Lagrangian mechanics on Lie algebroids Cariñena, José F. Reduction Lie algebroids Lagrangian mechanics |
title_short |
Reduction of Lagrangian mechanics on Lie algebroids |
title_full |
Reduction of Lagrangian mechanics on Lie algebroids |
title_fullStr |
Reduction of Lagrangian mechanics on Lie algebroids |
title_full_unstemmed |
Reduction of Lagrangian mechanics on Lie algebroids |
title_sort |
Reduction of Lagrangian mechanics on Lie algebroids |
author |
Cariñena, José F. |
author_facet |
Cariñena, José F. Costa, Joana M. Nunes da Santos, Patrícia |
author_role |
author |
author2 |
Costa, Joana M. Nunes da Santos, Patrícia |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Cariñena, José F. Costa, Joana M. Nunes da Santos, Patrícia |
dc.subject.por.fl_str_mv |
Reduction Lie algebroids Lagrangian mechanics |
topic |
Reduction Lie algebroids Lagrangian mechanics |
description |
We prove that if a surjective submersion which is a homomorphism of Lie algebroids is given, then there exists another homomorphism between the corresponding prolonged Lie algebroids and a relation between the dynamics on these Lie algebroid prolongations is established. We also propose a geometric reduction method for dynamics on Lie algebroids defined by a Lagrangian and the method is applied to regular Lagrangian systems with nonholonomic constraints. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/4384 http://hdl.handle.net/10316/4384 https://doi.org/10.1016/j.geomphys.2006.08.001 |
url |
http://hdl.handle.net/10316/4384 https://doi.org/10.1016/j.geomphys.2006.08.001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Geometry and Physics. 57:3 (2007) 977-990 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133888961839104 |