Improving malware detection with neuroevolution : a study with the semantic learning machine
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/79565 |
Resumo: | Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
id |
RCAP_c2c0b07fb3761609cc66dd80673744d1 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/79565 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Improving malware detection with neuroevolution : a study with the semantic learning machineGeometric semantic genetic programmingArtificial Neural NetworksGenetic ProgrammingSupervised LearningSemantic Learning MachineMultilayer Neural NetworksProject Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceMachine learning has become more attractive over the years due to its remarkable adaptation and problem-solving abilities. Algorithms compete amongst each other to claim the best possible results for every problem, being one of the most valued characteristics their generalization ability. A recently proposed methodology of Genetic Programming (GP), called Geometric Semantic Genetic Programming (GSGP), has seen its popularity rise over the last few years, achieving great results compared to other state-of-the-art algorithms, due to its remarkable feature of inducing a fitness landscape with no local optima solutions. To any supervised learning problem, where a metric is used as an error function, GSGP’s landscape will be unimodal, therefore allowing for genetic algorithms to behave much more efficiently and effectively. Inspired by GSGP’s features, Gonçalves developed a new mutation operator to be applied to the Neural Networks (NN) domain, creating the Semantic Learning Machine (SLM). Despite GSGP’s good results already proven, there are still research opportunities for improvement, that need to be performed to empirically prove GSGP as a state-of-the-art framework. In this case, the study focused on applying SLM to NNs with multiple hidden layers and compare its outputs to a very popular algorithm, Multilayer Perceptron (MLP), on a considerably large classification dataset about Android malware. Findings proved that SLM, sharing common parametrization with MLP, in order to have a fair comparison, is able to outperform it, with statistical significance.Gonçalves, Ivo Carlos PereiraCastelli, MauroRUNTeixeira, Mário José Santos2019-08-29T15:46:27Z2019-07-012019-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/79565TID:202278174enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:35:18Zoai:run.unl.pt:10362/79565Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:48.764031Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Improving malware detection with neuroevolution : a study with the semantic learning machine |
title |
Improving malware detection with neuroevolution : a study with the semantic learning machine |
spellingShingle |
Improving malware detection with neuroevolution : a study with the semantic learning machine Teixeira, Mário José Santos Geometric semantic genetic programming Artificial Neural Networks Genetic Programming Supervised Learning Semantic Learning Machine Multilayer Neural Networks |
title_short |
Improving malware detection with neuroevolution : a study with the semantic learning machine |
title_full |
Improving malware detection with neuroevolution : a study with the semantic learning machine |
title_fullStr |
Improving malware detection with neuroevolution : a study with the semantic learning machine |
title_full_unstemmed |
Improving malware detection with neuroevolution : a study with the semantic learning machine |
title_sort |
Improving malware detection with neuroevolution : a study with the semantic learning machine |
author |
Teixeira, Mário José Santos |
author_facet |
Teixeira, Mário José Santos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gonçalves, Ivo Carlos Pereira Castelli, Mauro RUN |
dc.contributor.author.fl_str_mv |
Teixeira, Mário José Santos |
dc.subject.por.fl_str_mv |
Geometric semantic genetic programming Artificial Neural Networks Genetic Programming Supervised Learning Semantic Learning Machine Multilayer Neural Networks |
topic |
Geometric semantic genetic programming Artificial Neural Networks Genetic Programming Supervised Learning Semantic Learning Machine Multilayer Neural Networks |
description |
Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-29T15:46:27Z 2019-07-01 2019-07-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/79565 TID:202278174 |
url |
http://hdl.handle.net/10362/79565 |
identifier_str_mv |
TID:202278174 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137978463813632 |