Adenosine A2AReceptors Regulate the Extracellular Accumulation of Excitatory Amino Acids upon Metabolic Dysfunction in Chick Cultured Retinal Cells

Detalhes bibliográficos
Autor(a) principal: Rego, Ana Cristina
Data de Publicação: 2000
Outros Autores: Agostinho, Paula, Melo, Joana, Cunha, Rodrigo A., Oliveira, Catarina R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/4839
https://doi.org/10.1006/exer.1999.0815
Resumo: The role of endogenous extracellular adenosine as a tonic modulator of the extracellular accumulation of excitatory amino acids (glutamate and aspartate) caused by metabolic inhibition was investigated in cultured retinal cells. The selective adenosine A2Areceptor antagonist, 4-[2-[7-amino-2-(2-furyl)(1,2,4)-triazin-5-ylamino]-ethyl]phenol (ZM241385) (50 n ), increased the release of glutamate (three- to four-fold) and of aspartate (nearly two-fold) upon iodoacetic acid-induced glycolysis inhibition, in the presence or in the absence of Ca2+. Blockade of tonic activation of A2Areceptors by ZM241385 also increased (nearly two-fold) the ischemia-induced release of glutamate and aspartate. Furthermore, another selective A2Areceptor antagonist, 5-amino-7-(2-phenylethyl)-2-(2-furyl)pyrazolo[4,3- e ]-1,2,4-triazolo[1,5- c ]pyrimidine (SCH58261), also increased the release of aspartate and glutamate by about two-fold in cells submitted to glycolysis inhibition. In contrast, the selective adenosine A1receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (100 n ), did not significantly modify the extracellular accumulation of either glutamate or aspartate caused by inducers of chemical ischemia or glycolytic inhibitors. Inhibition of glycolysis also increased (about three-fold) the extracellular accumulation of GABA, which was virtually unchanged by ZM241385. Furthermore, the GABAAreceptor antagonist, bicuculline (10 [mu]), only increased (nearly two-fold) the iodoacetic acid-induced Ca2+-dependent release of glutamate, whereas the GABABreceptor antagonist, 3-aminopropyl(diethoxymethyl) phosphinic acid, CGP35348 (100 [mu]), was devoid of effects on the extracellular accumulation of glutamate and aspartate. These results show that endogenous extracellular adenosine, which rises under conditions of inhibited glycolysis, tonically inhibits the extracellular accumulation of excitatory amino acid through the activation of A2A, but not A1, adenosine receptors, and this effect is independent of GABAAand GABABfunctions in the cultured retinal cells.
id RCAP_c31dd2dfa4c326f00d8fb6681d73df47
oai_identifier_str oai:estudogeral.uc.pt:10316/4839
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Adenosine A2AReceptors Regulate the Extracellular Accumulation of Excitatory Amino Acids upon Metabolic Dysfunction in Chick Cultured Retinal CellsAspartateA1adenosine receptorsA2Aadenosine receptorsAdenosineGlutamateMetabolic stressRetinal cellsThe role of endogenous extracellular adenosine as a tonic modulator of the extracellular accumulation of excitatory amino acids (glutamate and aspartate) caused by metabolic inhibition was investigated in cultured retinal cells. The selective adenosine A2Areceptor antagonist, 4-[2-[7-amino-2-(2-furyl)(1,2,4)-triazin-5-ylamino]-ethyl]phenol (ZM241385) (50 n ), increased the release of glutamate (three- to four-fold) and of aspartate (nearly two-fold) upon iodoacetic acid-induced glycolysis inhibition, in the presence or in the absence of Ca2+. Blockade of tonic activation of A2Areceptors by ZM241385 also increased (nearly two-fold) the ischemia-induced release of glutamate and aspartate. Furthermore, another selective A2Areceptor antagonist, 5-amino-7-(2-phenylethyl)-2-(2-furyl)pyrazolo[4,3- e ]-1,2,4-triazolo[1,5- c ]pyrimidine (SCH58261), also increased the release of aspartate and glutamate by about two-fold in cells submitted to glycolysis inhibition. In contrast, the selective adenosine A1receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (100 n ), did not significantly modify the extracellular accumulation of either glutamate or aspartate caused by inducers of chemical ischemia or glycolytic inhibitors. Inhibition of glycolysis also increased (about three-fold) the extracellular accumulation of GABA, which was virtually unchanged by ZM241385. Furthermore, the GABAAreceptor antagonist, bicuculline (10 [mu]), only increased (nearly two-fold) the iodoacetic acid-induced Ca2+-dependent release of glutamate, whereas the GABABreceptor antagonist, 3-aminopropyl(diethoxymethyl) phosphinic acid, CGP35348 (100 [mu]), was devoid of effects on the extracellular accumulation of glutamate and aspartate. These results show that endogenous extracellular adenosine, which rises under conditions of inhibited glycolysis, tonically inhibits the extracellular accumulation of excitatory amino acid through the activation of A2A, but not A1, adenosine receptors, and this effect is independent of GABAAand GABABfunctions in the cultured retinal cells.http://www.sciencedirect.com/science/article/B6WFD-45F4J3T-39/1/d76e568b0a8d49a393eeeb30f961101d2000info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4839http://hdl.handle.net/10316/4839https://doi.org/10.1006/exer.1999.0815engExperimental Eye Research. 70:5 (2000) 577-587Rego, Ana CristinaAgostinho, PaulaMelo, JoanaCunha, Rodrigo A.Oliveira, Catarina R.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:48:38Zoai:estudogeral.uc.pt:10316/4839Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:43:29.569687Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Adenosine A2AReceptors Regulate the Extracellular Accumulation of Excitatory Amino Acids upon Metabolic Dysfunction in Chick Cultured Retinal Cells
title Adenosine A2AReceptors Regulate the Extracellular Accumulation of Excitatory Amino Acids upon Metabolic Dysfunction in Chick Cultured Retinal Cells
spellingShingle Adenosine A2AReceptors Regulate the Extracellular Accumulation of Excitatory Amino Acids upon Metabolic Dysfunction in Chick Cultured Retinal Cells
Rego, Ana Cristina
Aspartate
A1adenosine receptors
A2Aadenosine receptors
Adenosine
Glutamate
Metabolic stress
Retinal cells
title_short Adenosine A2AReceptors Regulate the Extracellular Accumulation of Excitatory Amino Acids upon Metabolic Dysfunction in Chick Cultured Retinal Cells
title_full Adenosine A2AReceptors Regulate the Extracellular Accumulation of Excitatory Amino Acids upon Metabolic Dysfunction in Chick Cultured Retinal Cells
title_fullStr Adenosine A2AReceptors Regulate the Extracellular Accumulation of Excitatory Amino Acids upon Metabolic Dysfunction in Chick Cultured Retinal Cells
title_full_unstemmed Adenosine A2AReceptors Regulate the Extracellular Accumulation of Excitatory Amino Acids upon Metabolic Dysfunction in Chick Cultured Retinal Cells
title_sort Adenosine A2AReceptors Regulate the Extracellular Accumulation of Excitatory Amino Acids upon Metabolic Dysfunction in Chick Cultured Retinal Cells
author Rego, Ana Cristina
author_facet Rego, Ana Cristina
Agostinho, Paula
Melo, Joana
Cunha, Rodrigo A.
Oliveira, Catarina R.
author_role author
author2 Agostinho, Paula
Melo, Joana
Cunha, Rodrigo A.
Oliveira, Catarina R.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Rego, Ana Cristina
Agostinho, Paula
Melo, Joana
Cunha, Rodrigo A.
Oliveira, Catarina R.
dc.subject.por.fl_str_mv Aspartate
A1adenosine receptors
A2Aadenosine receptors
Adenosine
Glutamate
Metabolic stress
Retinal cells
topic Aspartate
A1adenosine receptors
A2Aadenosine receptors
Adenosine
Glutamate
Metabolic stress
Retinal cells
description The role of endogenous extracellular adenosine as a tonic modulator of the extracellular accumulation of excitatory amino acids (glutamate and aspartate) caused by metabolic inhibition was investigated in cultured retinal cells. The selective adenosine A2Areceptor antagonist, 4-[2-[7-amino-2-(2-furyl)(1,2,4)-triazin-5-ylamino]-ethyl]phenol (ZM241385) (50 n ), increased the release of glutamate (three- to four-fold) and of aspartate (nearly two-fold) upon iodoacetic acid-induced glycolysis inhibition, in the presence or in the absence of Ca2+. Blockade of tonic activation of A2Areceptors by ZM241385 also increased (nearly two-fold) the ischemia-induced release of glutamate and aspartate. Furthermore, another selective A2Areceptor antagonist, 5-amino-7-(2-phenylethyl)-2-(2-furyl)pyrazolo[4,3- e ]-1,2,4-triazolo[1,5- c ]pyrimidine (SCH58261), also increased the release of aspartate and glutamate by about two-fold in cells submitted to glycolysis inhibition. In contrast, the selective adenosine A1receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (100 n ), did not significantly modify the extracellular accumulation of either glutamate or aspartate caused by inducers of chemical ischemia or glycolytic inhibitors. Inhibition of glycolysis also increased (about three-fold) the extracellular accumulation of GABA, which was virtually unchanged by ZM241385. Furthermore, the GABAAreceptor antagonist, bicuculline (10 [mu]), only increased (nearly two-fold) the iodoacetic acid-induced Ca2+-dependent release of glutamate, whereas the GABABreceptor antagonist, 3-aminopropyl(diethoxymethyl) phosphinic acid, CGP35348 (100 [mu]), was devoid of effects on the extracellular accumulation of glutamate and aspartate. These results show that endogenous extracellular adenosine, which rises under conditions of inhibited glycolysis, tonically inhibits the extracellular accumulation of excitatory amino acid through the activation of A2A, but not A1, adenosine receptors, and this effect is independent of GABAAand GABABfunctions in the cultured retinal cells.
publishDate 2000
dc.date.none.fl_str_mv 2000
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/4839
http://hdl.handle.net/10316/4839
https://doi.org/10.1006/exer.1999.0815
url http://hdl.handle.net/10316/4839
https://doi.org/10.1006/exer.1999.0815
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Experimental Eye Research. 70:5 (2000) 577-587
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133707179655168