Compact elastic objects in general relativity
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/36471 |
Resumo: | We introduce a rigorous and general framework to study systematically self-gravitating elastic materials within general relativity, and apply it to investigate the existence and viability, including radial stability, of spherically symmetric elastic stars. We present the mass-radius ($M-R$) diagram for various families of models, showing that elasticity contributes to increase the maximum mass and the compactness up to $\approx 22\%$, thus supporting compact stars with mass well above two solar masses. Some of these elastic stars can reach compactness as high as $GM/(c^2R)\approx 0.35$ while remaining stable under radial perturbations and satisfying all energy conditions and subluminal wave propagation, thus being physically realizable models of stars with a light ring. We provide numerical evidence that radial instability occurs for central densities larger than that corresponding to the maximum mass, as in the perfect-fluid case. Elasticity may be a key ingredient to build consistent models of exotic ultracompact objects and black-hole mimickers, and can also be relevant for a more accurate modelling of the interior of neutron stars. |
id |
RCAP_c41d40e7f5137ce03229d1e96b1c9076 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/36471 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Compact elastic objects in general relativityWe introduce a rigorous and general framework to study systematically self-gravitating elastic materials within general relativity, and apply it to investigate the existence and viability, including radial stability, of spherically symmetric elastic stars. We present the mass-radius ($M-R$) diagram for various families of models, showing that elasticity contributes to increase the maximum mass and the compactness up to $\approx 22\%$, thus supporting compact stars with mass well above two solar masses. Some of these elastic stars can reach compactness as high as $GM/(c^2R)\approx 0.35$ while remaining stable under radial perturbations and satisfying all energy conditions and subluminal wave propagation, thus being physically realizable models of stars with a light ring. We provide numerical evidence that radial instability occurs for central densities larger than that corresponding to the maximum mass, as in the perfect-fluid case. Elasticity may be a key ingredient to build consistent models of exotic ultracompact objects and black-hole mimickers, and can also be relevant for a more accurate modelling of the interior of neutron stars.American Physical Society2023-03-06T13:10:58Z2022-02-15T00:00:00Z2022-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/36471eng2470-001010.1103/PhysRevD.105.044025Alho, ArturNatário, JoséPani, PaoloRaposo, Guilhermeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:08:52Zoai:ria.ua.pt:10773/36471Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:42.426009Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Compact elastic objects in general relativity |
title |
Compact elastic objects in general relativity |
spellingShingle |
Compact elastic objects in general relativity Alho, Artur |
title_short |
Compact elastic objects in general relativity |
title_full |
Compact elastic objects in general relativity |
title_fullStr |
Compact elastic objects in general relativity |
title_full_unstemmed |
Compact elastic objects in general relativity |
title_sort |
Compact elastic objects in general relativity |
author |
Alho, Artur |
author_facet |
Alho, Artur Natário, José Pani, Paolo Raposo, Guilherme |
author_role |
author |
author2 |
Natário, José Pani, Paolo Raposo, Guilherme |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Alho, Artur Natário, José Pani, Paolo Raposo, Guilherme |
description |
We introduce a rigorous and general framework to study systematically self-gravitating elastic materials within general relativity, and apply it to investigate the existence and viability, including radial stability, of spherically symmetric elastic stars. We present the mass-radius ($M-R$) diagram for various families of models, showing that elasticity contributes to increase the maximum mass and the compactness up to $\approx 22\%$, thus supporting compact stars with mass well above two solar masses. Some of these elastic stars can reach compactness as high as $GM/(c^2R)\approx 0.35$ while remaining stable under radial perturbations and satisfying all energy conditions and subluminal wave propagation, thus being physically realizable models of stars with a light ring. We provide numerical evidence that radial instability occurs for central densities larger than that corresponding to the maximum mass, as in the perfect-fluid case. Elasticity may be a key ingredient to build consistent models of exotic ultracompact objects and black-hole mimickers, and can also be relevant for a more accurate modelling of the interior of neutron stars. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02-15T00:00:00Z 2022-02-15 2023-03-06T13:10:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/36471 |
url |
http://hdl.handle.net/10773/36471 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2470-0010 10.1103/PhysRevD.105.044025 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137722503266304 |