Exponential generalized distributions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.13/5328 |
Resumo: | In this paper we generalize the Fourier transform from the space of tempered distributions to a bigger space called exponential generalized distributions. For that purpose we replace the Schwartz space S by a smaller space X0 of smooth functions such that, among other properties, decay at infinity faster than any exponential. The construction of X0 is such that this space of test functions is closed for derivatives, for Fourier transform and for translations. We equip X0 with an appropriate locally convex topology and we study it’s dual X’0; we call X0 0 the space of expo nential generalized distributions. The space X0 0 contains all the Schwartz tempered distributions, is closed for derivatives, and both, translations and Fourier transform, are vector and topological automorphisms in X0 0. As non trivial examples of elements in X0 0, we show that some multipole series appearing in physics are convergent in this space. |
id |
RCAP_c4f4f3374b51baf6c177095618897ee1 |
---|---|
oai_identifier_str |
oai:digituma.uma.pt:10400.13/5328 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Exponential generalized distributionsDistributionUltradistributionMultipole seriesFourier transform.Faculdade de Ciências Exatas e da EngenhariaIn this paper we generalize the Fourier transform from the space of tempered distributions to a bigger space called exponential generalized distributions. For that purpose we replace the Schwartz space S by a smaller space X0 of smooth functions such that, among other properties, decay at infinity faster than any exponential. The construction of X0 is such that this space of test functions is closed for derivatives, for Fourier transform and for translations. We equip X0 with an appropriate locally convex topology and we study it’s dual X’0; we call X0 0 the space of expo nential generalized distributions. The space X0 0 contains all the Schwartz tempered distributions, is closed for derivatives, and both, translations and Fourier transform, are vector and topological automorphisms in X0 0. As non trivial examples of elements in X0 0, we show that some multipole series appearing in physics are convergent in this space.The Berkeley Electronic PressDigitUMaGordon, M.Loura, L.2023-10-20T10:58:00Z20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.13/5328eng10.18926/mjou/33494info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-22T06:41:50Zoai:digituma.uma.pt:10400.13/5328Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:39:22.386399Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Exponential generalized distributions |
title |
Exponential generalized distributions |
spellingShingle |
Exponential generalized distributions Gordon, M. Distribution Ultradistribution Multipole series Fourier transform . Faculdade de Ciências Exatas e da Engenharia |
title_short |
Exponential generalized distributions |
title_full |
Exponential generalized distributions |
title_fullStr |
Exponential generalized distributions |
title_full_unstemmed |
Exponential generalized distributions |
title_sort |
Exponential generalized distributions |
author |
Gordon, M. |
author_facet |
Gordon, M. Loura, L. |
author_role |
author |
author2 |
Loura, L. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
DigitUMa |
dc.contributor.author.fl_str_mv |
Gordon, M. Loura, L. |
dc.subject.por.fl_str_mv |
Distribution Ultradistribution Multipole series Fourier transform . Faculdade de Ciências Exatas e da Engenharia |
topic |
Distribution Ultradistribution Multipole series Fourier transform . Faculdade de Ciências Exatas e da Engenharia |
description |
In this paper we generalize the Fourier transform from the space of tempered distributions to a bigger space called exponential generalized distributions. For that purpose we replace the Schwartz space S by a smaller space X0 of smooth functions such that, among other properties, decay at infinity faster than any exponential. The construction of X0 is such that this space of test functions is closed for derivatives, for Fourier transform and for translations. We equip X0 with an appropriate locally convex topology and we study it’s dual X’0; we call X0 0 the space of expo nential generalized distributions. The space X0 0 contains all the Schwartz tempered distributions, is closed for derivatives, and both, translations and Fourier transform, are vector and topological automorphisms in X0 0. As non trivial examples of elements in X0 0, we show that some multipole series appearing in physics are convergent in this space. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2010-01-01T00:00:00Z 2023-10-20T10:58:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.13/5328 |
url |
http://hdl.handle.net/10400.13/5328 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.18926/mjou/33494 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
The Berkeley Electronic Press |
publisher.none.fl_str_mv |
The Berkeley Electronic Press |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133655047602176 |