Exponential generalized distributions

Detalhes bibliográficos
Autor(a) principal: Gordon, M.
Data de Publicação: 2010
Outros Autores: Loura, L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.13/5328
Resumo: In this paper we generalize the Fourier transform from the space of tempered distributions to a bigger space called exponential generalized distributions. For that purpose we replace the Schwartz space S by a smaller space X0 of smooth functions such that, among other properties, decay at infinity faster than any exponential. The construction of X0 is such that this space of test functions is closed for derivatives, for Fourier transform and for translations. We equip X0 with an appropriate locally convex topology and we study it’s dual X’0; we call X0 0 the space of expo nential generalized distributions. The space X0 0 contains all the Schwartz tempered distributions, is closed for derivatives, and both, translations and Fourier transform, are vector and topological automorphisms in X0 0. As non trivial examples of elements in X0 0, we show that some multipole series appearing in physics are convergent in this space.
id RCAP_c4f4f3374b51baf6c177095618897ee1
oai_identifier_str oai:digituma.uma.pt:10400.13/5328
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Exponential generalized distributionsDistributionUltradistributionMultipole seriesFourier transform.Faculdade de Ciências Exatas e da EngenhariaIn this paper we generalize the Fourier transform from the space of tempered distributions to a bigger space called exponential generalized distributions. For that purpose we replace the Schwartz space S by a smaller space X0 of smooth functions such that, among other properties, decay at infinity faster than any exponential. The construction of X0 is such that this space of test functions is closed for derivatives, for Fourier transform and for translations. We equip X0 with an appropriate locally convex topology and we study it’s dual X’0; we call X0 0 the space of expo nential generalized distributions. The space X0 0 contains all the Schwartz tempered distributions, is closed for derivatives, and both, translations and Fourier transform, are vector and topological automorphisms in X0 0. As non trivial examples of elements in X0 0, we show that some multipole series appearing in physics are convergent in this space.The Berkeley Electronic PressDigitUMaGordon, M.Loura, L.2023-10-20T10:58:00Z20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.13/5328eng10.18926/mjou/33494info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-22T06:41:50Zoai:digituma.uma.pt:10400.13/5328Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:39:22.386399Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Exponential generalized distributions
title Exponential generalized distributions
spellingShingle Exponential generalized distributions
Gordon, M.
Distribution
Ultradistribution
Multipole series
Fourier transform
.
Faculdade de Ciências Exatas e da Engenharia
title_short Exponential generalized distributions
title_full Exponential generalized distributions
title_fullStr Exponential generalized distributions
title_full_unstemmed Exponential generalized distributions
title_sort Exponential generalized distributions
author Gordon, M.
author_facet Gordon, M.
Loura, L.
author_role author
author2 Loura, L.
author2_role author
dc.contributor.none.fl_str_mv DigitUMa
dc.contributor.author.fl_str_mv Gordon, M.
Loura, L.
dc.subject.por.fl_str_mv Distribution
Ultradistribution
Multipole series
Fourier transform
.
Faculdade de Ciências Exatas e da Engenharia
topic Distribution
Ultradistribution
Multipole series
Fourier transform
.
Faculdade de Ciências Exatas e da Engenharia
description In this paper we generalize the Fourier transform from the space of tempered distributions to a bigger space called exponential generalized distributions. For that purpose we replace the Schwartz space S by a smaller space X0 of smooth functions such that, among other properties, decay at infinity faster than any exponential. The construction of X0 is such that this space of test functions is closed for derivatives, for Fourier transform and for translations. We equip X0 with an appropriate locally convex topology and we study it’s dual X’0; we call X0 0 the space of expo nential generalized distributions. The space X0 0 contains all the Schwartz tempered distributions, is closed for derivatives, and both, translations and Fourier transform, are vector and topological automorphisms in X0 0. As non trivial examples of elements in X0 0, we show that some multipole series appearing in physics are convergent in this space.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
2023-10-20T10:58:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.13/5328
url http://hdl.handle.net/10400.13/5328
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.18926/mjou/33494
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv The Berkeley Electronic Press
publisher.none.fl_str_mv The Berkeley Electronic Press
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133655047602176