The Oberbeck-Boussinesq problem modified by a thermo-absorption term

Detalhes bibliográficos
Autor(a) principal: Antontsev, S. N.
Data de Publicação: 2011
Outros Autores: de Oliveira, H. B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/11470
Resumo: We consider the Oberbeck-Boussinesq problem with an extra coupling, establishing a suitable relation between the velocity and the temperature. Our model involves a system of equations given by the transient Navier-Stokes equations modified by introducing the thermo-absorption term. The model involves also the transient temperature equation with nonlinear diffusion. For the obtained problem, we prove the existence of weak solutions for any N >= 2 and its uniqueness if N = 2. Then, considering a low range of temperature, but upper than the phase changing one, we study several properties related with vanishing in time of the velocity component of the weak solutions. First, assuming the buoyancy forces field extinct after a finite time, we prove the velocity component will extinct in a later finite time, provided the thermo-absorption term is sublinear. In this case, considering a suitable buoyancy forces field which vanishes at some instant of time, we prove the velocity component extinct at the same instant. We prove also that for non-zero buoyancy forces, but decaying at a power time rate, the velocity component decay at analogous power time rates, provided the thermo-absorption term is superlinear. At last, we prove that for a general non-zero bounded buoyancy force, the velocity component exponentially decay in time whether the thermo-absorption term is sub or superlinear. (C) 2011 Elsevier Inc. All rights reserved.
id RCAP_c54365b83d714d86dfa09d4b9ecbe501
oai_identifier_str oai:sapientia.ualg.pt:10400.1/11470
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The Oberbeck-Boussinesq problem modified by a thermo-absorption termApproximationWe consider the Oberbeck-Boussinesq problem with an extra coupling, establishing a suitable relation between the velocity and the temperature. Our model involves a system of equations given by the transient Navier-Stokes equations modified by introducing the thermo-absorption term. The model involves also the transient temperature equation with nonlinear diffusion. For the obtained problem, we prove the existence of weak solutions for any N >= 2 and its uniqueness if N = 2. Then, considering a low range of temperature, but upper than the phase changing one, we study several properties related with vanishing in time of the velocity component of the weak solutions. First, assuming the buoyancy forces field extinct after a finite time, we prove the velocity component will extinct in a later finite time, provided the thermo-absorption term is sublinear. In this case, considering a suitable buoyancy forces field which vanishes at some instant of time, we prove the velocity component extinct at the same instant. We prove also that for non-zero buoyancy forces, but decaying at a power time rate, the velocity component decay at analogous power time rates, provided the thermo-absorption term is superlinear. At last, we prove that for a general non-zero bounded buoyancy force, the velocity component exponentially decay in time whether the thermo-absorption term is sub or superlinear. (C) 2011 Elsevier Inc. All rights reserved.FEDER; FCTAcademic Press Inc Elsevier ScienceSapientiaAntontsev, S. N.de Oliveira, H. B.2018-12-07T14:53:21Z2011-072011-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11470eng0022-247X10.1016/j.jmaa.2011.02.018info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:23:17Zoai:sapientia.ualg.pt:10400.1/11470Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:02:58.413536Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The Oberbeck-Boussinesq problem modified by a thermo-absorption term
title The Oberbeck-Boussinesq problem modified by a thermo-absorption term
spellingShingle The Oberbeck-Boussinesq problem modified by a thermo-absorption term
Antontsev, S. N.
Approximation
title_short The Oberbeck-Boussinesq problem modified by a thermo-absorption term
title_full The Oberbeck-Boussinesq problem modified by a thermo-absorption term
title_fullStr The Oberbeck-Boussinesq problem modified by a thermo-absorption term
title_full_unstemmed The Oberbeck-Boussinesq problem modified by a thermo-absorption term
title_sort The Oberbeck-Boussinesq problem modified by a thermo-absorption term
author Antontsev, S. N.
author_facet Antontsev, S. N.
de Oliveira, H. B.
author_role author
author2 de Oliveira, H. B.
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Antontsev, S. N.
de Oliveira, H. B.
dc.subject.por.fl_str_mv Approximation
topic Approximation
description We consider the Oberbeck-Boussinesq problem with an extra coupling, establishing a suitable relation between the velocity and the temperature. Our model involves a system of equations given by the transient Navier-Stokes equations modified by introducing the thermo-absorption term. The model involves also the transient temperature equation with nonlinear diffusion. For the obtained problem, we prove the existence of weak solutions for any N >= 2 and its uniqueness if N = 2. Then, considering a low range of temperature, but upper than the phase changing one, we study several properties related with vanishing in time of the velocity component of the weak solutions. First, assuming the buoyancy forces field extinct after a finite time, we prove the velocity component will extinct in a later finite time, provided the thermo-absorption term is sublinear. In this case, considering a suitable buoyancy forces field which vanishes at some instant of time, we prove the velocity component extinct at the same instant. We prove also that for non-zero buoyancy forces, but decaying at a power time rate, the velocity component decay at analogous power time rates, provided the thermo-absorption term is superlinear. At last, we prove that for a general non-zero bounded buoyancy force, the velocity component exponentially decay in time whether the thermo-absorption term is sub or superlinear. (C) 2011 Elsevier Inc. All rights reserved.
publishDate 2011
dc.date.none.fl_str_mv 2011-07
2011-07-01T00:00:00Z
2018-12-07T14:53:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/11470
url http://hdl.handle.net/10400.1/11470
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-247X
10.1016/j.jmaa.2011.02.018
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133264268492800