Development of a Python Library for Processing Seismic Time Series
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/11823 |
Resumo: | Earthquakes occur around the world every day. This natural phenomena can result in enormous destruction and loss of life. However, at the same time, it is the primary source for studying Earth, the active planet. The seismic waves generated by earthquakes propagate deep into the Earth, carrying considerable information about the Earth’s structure, from the shallow depths in the crust to the core. The information transferred by seismic waves needs advanced signal processing and inversion tools to be converted into useful information about the Earths inner structures, from local to global scales. The everevolving interest for investigating more accurately the terrestrial system led to the development of advanced signal processing algorithms to extract optimal information from the recorded seismic waveforms. These algorithms use advanced numerical modeling to extract optimal information from the different seismic phases generated by earthquakes. The development of algorithms from a mathematicalphysical point of view is of great interest; on the other hand, developing a platform for their implementation is also significant. This research aims to build a bridge between the development of purely theoretical ideas in seismology and their functional implementation. In this dissertation SeisPolPy, a high quality Pythonbased library for processing seismic waveforms is developed. It consists of the latest polarization analysis and filter algorithms to extract different seismic phases in the recorded seismograms. The algorithms range from the most common algorithms in the literature to a newly developed method, sparsitypromoting timefrequency filtering. In addition, the focus of the work is on the generation of highquality synthetic seismic data for testing and evaluating the algorithms. SeisPolPy library, aims to provide seismology community a tool for separation of seismic phases by using highresolution polarization analysis and filtering techniques. The research work is carried out within the framework of the Seismicity and HAzards of the subsaharian Atlantic Margin (SHAZAM) project that requires high quality algorithms able to process the limited seismic data available in the Gulf of Guinea, the study area of the SHAZAM project. |
id |
RCAP_c55de312b036afbaeb40d5c75e785c5e |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/11823 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Development of a Python Library for Processing Seismic Time SeriesLibraryMethodsPythonSeismic SignalSeismologySignal ProcessingSynthetic DataTime SeriesDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaEarthquakes occur around the world every day. This natural phenomena can result in enormous destruction and loss of life. However, at the same time, it is the primary source for studying Earth, the active planet. The seismic waves generated by earthquakes propagate deep into the Earth, carrying considerable information about the Earth’s structure, from the shallow depths in the crust to the core. The information transferred by seismic waves needs advanced signal processing and inversion tools to be converted into useful information about the Earths inner structures, from local to global scales. The everevolving interest for investigating more accurately the terrestrial system led to the development of advanced signal processing algorithms to extract optimal information from the recorded seismic waveforms. These algorithms use advanced numerical modeling to extract optimal information from the different seismic phases generated by earthquakes. The development of algorithms from a mathematicalphysical point of view is of great interest; on the other hand, developing a platform for their implementation is also significant. This research aims to build a bridge between the development of purely theoretical ideas in seismology and their functional implementation. In this dissertation SeisPolPy, a high quality Pythonbased library for processing seismic waveforms is developed. It consists of the latest polarization analysis and filter algorithms to extract different seismic phases in the recorded seismograms. The algorithms range from the most common algorithms in the literature to a newly developed method, sparsitypromoting timefrequency filtering. In addition, the focus of the work is on the generation of highquality synthetic seismic data for testing and evaluating the algorithms. SeisPolPy library, aims to provide seismology community a tool for separation of seismic phases by using highresolution polarization analysis and filtering techniques. The research work is carried out within the framework of the Seismicity and HAzards of the subsaharian Atlantic Margin (SHAZAM) project that requires high quality algorithms able to process the limited seismic data available in the Gulf of Guinea, the study area of the SHAZAM project.Terramotos ocorrem todos os dias em todo o mundo. Esta fenomeno natural pode vir a resultar numa enorme destruição e perda de vidas. No entanto, ao mesmo tempo, é a principal fonte para o estudo da Terra, o planeta activo. As ondas sísmicas geradas pelos terramotos propagamse profundamente na Terra, levando informação considerável sobre a estrutura da Terra, desde as zonas de menor profundidade da crosta até ao núcleo. A informação transferida por ondas sísmicas necessita de processamento avançado de sinais e ferramentas de inversão para ser convertida em informação util sobre a estrutura interna da Terra, desde escalas locais a globais. O interesse sempre crescente em investigar com maior precisão o sistema terrestre levou ao desenvolvimento de algoritmos avançados de processamento de sinais para extrair informação óptima das formas de ondas sísmicas registadas. Estes algoritmos fazem uso de modelos numéricos avançados para extrair informação óptima das diferentes fases sísmicas geradas pelos terramotos. O desenvolvimento de algoritmos de um ponto de vista matemáticofísico é de grande interesse; por outro lado, o desenvolvimento de uma plataforma para a sua implementação é também significativo. Esta investigação visa construir uma ponte entre o desenvolvimento de ideias puramente teóricas em sismologia e a sua implementação funcional. Com o decorrer desta dissertação foi desenvolvido o SeisPolPy, uma biblioteca de alta qualidade baseada em Python para o processamento de formas de ondas sísmicas. Consiste na mais recente análise de polarização e algoritmos de filtragem para extrair diferentes fases sísmicas nos sismogramas registados. Os algoritmos variam desde os algoritmos mais comuns na literatura até um método recentemente desenvolvido, que promove a frequência de filtragem por tempo e frequência. Além disso, o foco do trabalho é a geração de dados sísmicos sintéticos de alta qualidade para testar e avaliar os algoritmos. A biblioteca SeisPolPy, visa fornecer à comunidade sismológica uma ferramenta para a separação das fases sísmicas, utilizando técnicas de análise de polarização e filtragem de alta resolução. O trabalho de investigação é realizado no âmbito do projecto SHAZAM que requer algoritmos de alta qualidade que possuam a capacidade de processar os dados sísmicos, limitados, disponíveis no Golfo da Guiné, a área de estudo do projecto.Crocker, Paul AndrewMohammadigheymasi, HamzehuBibliorumAlmeida, Eduardo Rodrigues2022-01-14T17:12:36Z2021-10-132021-07-272021-10-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/11823TID:202858324enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-27T12:37:52Zoai:ubibliorum.ubi.pt:10400.6/11823Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-27T12:37:52Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Development of a Python Library for Processing Seismic Time Series |
title |
Development of a Python Library for Processing Seismic Time Series |
spellingShingle |
Development of a Python Library for Processing Seismic Time Series Almeida, Eduardo Rodrigues Library Methods Python Seismic Signal Seismology Signal Processing Synthetic Data Time Series Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Development of a Python Library for Processing Seismic Time Series |
title_full |
Development of a Python Library for Processing Seismic Time Series |
title_fullStr |
Development of a Python Library for Processing Seismic Time Series |
title_full_unstemmed |
Development of a Python Library for Processing Seismic Time Series |
title_sort |
Development of a Python Library for Processing Seismic Time Series |
author |
Almeida, Eduardo Rodrigues |
author_facet |
Almeida, Eduardo Rodrigues |
author_role |
author |
dc.contributor.none.fl_str_mv |
Crocker, Paul Andrew Mohammadigheymasi, Hamzeh uBibliorum |
dc.contributor.author.fl_str_mv |
Almeida, Eduardo Rodrigues |
dc.subject.por.fl_str_mv |
Library Methods Python Seismic Signal Seismology Signal Processing Synthetic Data Time Series Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Library Methods Python Seismic Signal Seismology Signal Processing Synthetic Data Time Series Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
Earthquakes occur around the world every day. This natural phenomena can result in enormous destruction and loss of life. However, at the same time, it is the primary source for studying Earth, the active planet. The seismic waves generated by earthquakes propagate deep into the Earth, carrying considerable information about the Earth’s structure, from the shallow depths in the crust to the core. The information transferred by seismic waves needs advanced signal processing and inversion tools to be converted into useful information about the Earths inner structures, from local to global scales. The everevolving interest for investigating more accurately the terrestrial system led to the development of advanced signal processing algorithms to extract optimal information from the recorded seismic waveforms. These algorithms use advanced numerical modeling to extract optimal information from the different seismic phases generated by earthquakes. The development of algorithms from a mathematicalphysical point of view is of great interest; on the other hand, developing a platform for their implementation is also significant. This research aims to build a bridge between the development of purely theoretical ideas in seismology and their functional implementation. In this dissertation SeisPolPy, a high quality Pythonbased library for processing seismic waveforms is developed. It consists of the latest polarization analysis and filter algorithms to extract different seismic phases in the recorded seismograms. The algorithms range from the most common algorithms in the literature to a newly developed method, sparsitypromoting timefrequency filtering. In addition, the focus of the work is on the generation of highquality synthetic seismic data for testing and evaluating the algorithms. SeisPolPy library, aims to provide seismology community a tool for separation of seismic phases by using highresolution polarization analysis and filtering techniques. The research work is carried out within the framework of the Seismicity and HAzards of the subsaharian Atlantic Margin (SHAZAM) project that requires high quality algorithms able to process the limited seismic data available in the Gulf of Guinea, the study area of the SHAZAM project. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-13 2021-07-27 2021-10-13T00:00:00Z 2022-01-14T17:12:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/11823 TID:202858324 |
url |
http://hdl.handle.net/10400.6/11823 |
identifier_str_mv |
TID:202858324 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817549661333880832 |