Codon ambiguities as a mechanism to alter the genetic code in Saccharomyces cerevisiae

Detalhes bibliográficos
Autor(a) principal: Silva, Ana Rita Guimarães Rodrigues da
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/15394
Resumo: Although the genetic code is generally viewed as immutable, alterations to its standard form occur in the three domains of life. A remarkable alteration to the standard genetic code occurs in many fungi of the Saccharomycotina CTG clade where the Leucine CUG codon has been reassigned to Serine by a novel transfer RNA (Ser-tRNACAG). The host laboratory made a major breakthrough by reversing this atypical genetic code alteration in the human pathogen Candida albicans using a combination of tRNA engineering, gene recombination and forced evolution. These results raised the hypothesis that synthetic codon ambiguities combined with experimental evolution may release codons from their frozen state. In this thesis we tested this hypothesis using S. cerevisiae as a model system. We generated ambiguity at specific codons in a two-step approach, involving deletion of tRNA genes followed by expression of non-cognate tRNAs that are able to compensate the deleted tRNA. Driven by the notion that rare codons are more susceptible to reassignment than those that are frequently used, we used two deletion strains where there is no cognate tRNA to decode the rare CUC-Leu codon and AGG-Arg codon. We exploited the vulnerability of the latter by engineering mutant tRNAs that misincorporate Ser at these sites. These recombinant strains were evolved over time using experimental evolution. Although there was a strong negative impact on the growth rate of strains expressing mutant tRNAs at high level, such expression at low level had little effect on cell fitness. We found that not only codon ambiguity, but also destabilization of the endogenous tRNA pool has a strong negative impact in growth rate. After evolution, strains expressing the mutant tRNA at high level recovered significantly in several growth parameters, showing that these strains adapt and exhibit higher tolerance to codon ambiguity. A fluorescent reporter system allowing the monitoring of Ser misincorporation showed that serine was indeed incorporated and possibly codon reassignment was achieved. Beside the overall negative consequences of codon ambiguity, we demonstrated that codons that tolerate the loss of their cognate tRNA can also tolerate high Ser misincorporation. This raises the hypothesis that these codons can be reassigned to standard and eventually to new amino acids for the production of proteins with novel properties, contributing to the field of synthetic biology and biotechnology.
id RCAP_c61ff050bbd728c37b52bc9de6f2bf32
oai_identifier_str oai:ria.ua.pt:10773/15394
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Codon ambiguities as a mechanism to alter the genetic code in Saccharomyces cerevisiaeBiologia molecularCódigo genéticoTradução genéticaÁcido ribonucleicoLevedurasAlthough the genetic code is generally viewed as immutable, alterations to its standard form occur in the three domains of life. A remarkable alteration to the standard genetic code occurs in many fungi of the Saccharomycotina CTG clade where the Leucine CUG codon has been reassigned to Serine by a novel transfer RNA (Ser-tRNACAG). The host laboratory made a major breakthrough by reversing this atypical genetic code alteration in the human pathogen Candida albicans using a combination of tRNA engineering, gene recombination and forced evolution. These results raised the hypothesis that synthetic codon ambiguities combined with experimental evolution may release codons from their frozen state. In this thesis we tested this hypothesis using S. cerevisiae as a model system. We generated ambiguity at specific codons in a two-step approach, involving deletion of tRNA genes followed by expression of non-cognate tRNAs that are able to compensate the deleted tRNA. Driven by the notion that rare codons are more susceptible to reassignment than those that are frequently used, we used two deletion strains where there is no cognate tRNA to decode the rare CUC-Leu codon and AGG-Arg codon. We exploited the vulnerability of the latter by engineering mutant tRNAs that misincorporate Ser at these sites. These recombinant strains were evolved over time using experimental evolution. Although there was a strong negative impact on the growth rate of strains expressing mutant tRNAs at high level, such expression at low level had little effect on cell fitness. We found that not only codon ambiguity, but also destabilization of the endogenous tRNA pool has a strong negative impact in growth rate. After evolution, strains expressing the mutant tRNA at high level recovered significantly in several growth parameters, showing that these strains adapt and exhibit higher tolerance to codon ambiguity. A fluorescent reporter system allowing the monitoring of Ser misincorporation showed that serine was indeed incorporated and possibly codon reassignment was achieved. Beside the overall negative consequences of codon ambiguity, we demonstrated that codons that tolerate the loss of their cognate tRNA can also tolerate high Ser misincorporation. This raises the hypothesis that these codons can be reassigned to standard and eventually to new amino acids for the production of proteins with novel properties, contributing to the field of synthetic biology and biotechnology.O código genético é geralmente visto como imutável, no entanto várias alterações à sua forma padrão são conhecidas. Uma das mais notáveis acontece em várias espécies do género Candida, onde o codão Leu-CUG é descodificado como serina por um novo RNA transferência (Ser-tRNACAG). O laboratório de acolhimento fez um grande progresso ao reverter a alteração atípica do código genético do fungo patogénico humano C. albicans, usando uma combinação de tRNAs mutantes, recombinação genética e evolução forçada. Estes resultados levantaram a hipótese que as ambiguidades sintéticas do codão, combinadas com evolução experimental, poderem libertar os codões do seu estado fixo. Nesta tese testamos esta hipótese usando S. cerevisiae como modelo biológico. Geramos ambiguidade em codões específicos, de forma bifásica, envolvendo a deleção de genes de tRNA, seguida pela expressão de tRNAs não-cognatos capazes de compensar o tRNA eliminado. Tendo como base a ideia que os codões raros são mais suscetíveis a alterações que aqueles usados frequentemente, usamos duas estirpes knock-out, nas quais não existem os tRNAs cognatos capazes de descodificar os codões raros CUC-Leu e AGG-Arg. Exploramos então a vulnerabilidade destes codões pela construção de tRNAs mutantes que incorporam erradamente Ser nestes locais. Estas estirpes recombinantes foram evoluídas ao longo do tempo, usando evolução experimental. Apesar de ter havido um forte impacto negativo na taxa de crescimento de estirpes que expressam o tRNA mutante a altos níveis, esta expressão a baixos níveis teve pouco impacto no fitness celular. Descobrimos que não só a ambiguidade do codão, mas também destabilizações da pool de tRNAs endógenos têm um impacto negativo na taxa de crescimento. Após a evolução, as estirpes com elevada expressão do tRNA mutante recuperaram significativamente em vários parâmetros de crescimento, o que mostra que estas adaptam-se e exibem maior tolerância à ambiguidade do codão. Através do sistema repórter fluorescente desenvolvido monitorizamos a incorporação errónea de Ser, o que nos indica que a Ser está de facto a ser incorporada e que, possivelmente, a alteração da identidade do codão foi atingida. Apesar das consequências negativas gerais da ambiguidade do codão, demonstramos que os codões capazes de tolerar a perda do seu tRNA cognato, conseguem também tolerar a incorporação elevada de Ser. Isto levanta a hipótese que estes codões podem ser recodificados para outros aminoácidos naturais e/ou artificiais para a produção de proteínas com novas propriedades, contribuindo assim para o campo da Biologia Sintética e Biotecnologia.Universidade de Aveiro2018-07-20T14:00:52Z2014-12-18T00:00:00Z2014-12-182016-12-11T16:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/15394TID:201564556engSilva, Ana Rita Guimarães Rodrigues dainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:28:27Zoai:ria.ua.pt:10773/15394Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:45.356016Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Codon ambiguities as a mechanism to alter the genetic code in Saccharomyces cerevisiae
title Codon ambiguities as a mechanism to alter the genetic code in Saccharomyces cerevisiae
spellingShingle Codon ambiguities as a mechanism to alter the genetic code in Saccharomyces cerevisiae
Silva, Ana Rita Guimarães Rodrigues da
Biologia molecular
Código genético
Tradução genética
Ácido ribonucleico
Leveduras
title_short Codon ambiguities as a mechanism to alter the genetic code in Saccharomyces cerevisiae
title_full Codon ambiguities as a mechanism to alter the genetic code in Saccharomyces cerevisiae
title_fullStr Codon ambiguities as a mechanism to alter the genetic code in Saccharomyces cerevisiae
title_full_unstemmed Codon ambiguities as a mechanism to alter the genetic code in Saccharomyces cerevisiae
title_sort Codon ambiguities as a mechanism to alter the genetic code in Saccharomyces cerevisiae
author Silva, Ana Rita Guimarães Rodrigues da
author_facet Silva, Ana Rita Guimarães Rodrigues da
author_role author
dc.contributor.author.fl_str_mv Silva, Ana Rita Guimarães Rodrigues da
dc.subject.por.fl_str_mv Biologia molecular
Código genético
Tradução genética
Ácido ribonucleico
Leveduras
topic Biologia molecular
Código genético
Tradução genética
Ácido ribonucleico
Leveduras
description Although the genetic code is generally viewed as immutable, alterations to its standard form occur in the three domains of life. A remarkable alteration to the standard genetic code occurs in many fungi of the Saccharomycotina CTG clade where the Leucine CUG codon has been reassigned to Serine by a novel transfer RNA (Ser-tRNACAG). The host laboratory made a major breakthrough by reversing this atypical genetic code alteration in the human pathogen Candida albicans using a combination of tRNA engineering, gene recombination and forced evolution. These results raised the hypothesis that synthetic codon ambiguities combined with experimental evolution may release codons from their frozen state. In this thesis we tested this hypothesis using S. cerevisiae as a model system. We generated ambiguity at specific codons in a two-step approach, involving deletion of tRNA genes followed by expression of non-cognate tRNAs that are able to compensate the deleted tRNA. Driven by the notion that rare codons are more susceptible to reassignment than those that are frequently used, we used two deletion strains where there is no cognate tRNA to decode the rare CUC-Leu codon and AGG-Arg codon. We exploited the vulnerability of the latter by engineering mutant tRNAs that misincorporate Ser at these sites. These recombinant strains were evolved over time using experimental evolution. Although there was a strong negative impact on the growth rate of strains expressing mutant tRNAs at high level, such expression at low level had little effect on cell fitness. We found that not only codon ambiguity, but also destabilization of the endogenous tRNA pool has a strong negative impact in growth rate. After evolution, strains expressing the mutant tRNA at high level recovered significantly in several growth parameters, showing that these strains adapt and exhibit higher tolerance to codon ambiguity. A fluorescent reporter system allowing the monitoring of Ser misincorporation showed that serine was indeed incorporated and possibly codon reassignment was achieved. Beside the overall negative consequences of codon ambiguity, we demonstrated that codons that tolerate the loss of their cognate tRNA can also tolerate high Ser misincorporation. This raises the hypothesis that these codons can be reassigned to standard and eventually to new amino acids for the production of proteins with novel properties, contributing to the field of synthetic biology and biotechnology.
publishDate 2014
dc.date.none.fl_str_mv 2014-12-18T00:00:00Z
2014-12-18
2016-12-11T16:00:00Z
2018-07-20T14:00:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15394
TID:201564556
url http://hdl.handle.net/10773/15394
identifier_str_mv TID:201564556
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137557374566400