mRNA mistranslation in Saccharomyces cerevisiae

Detalhes bibliográficos
Autor(a) principal: Paulo, Jorge Fernando Ferreira de Sousa
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/7775
Resumo: The genetic code is defined as a series of biochemical reactions that establish the cellular rules that translate DNA into protein information. It was established more than 3.5 billion years ago and it is one of the most conserved features of life. Over the years, several alterations to the standard genetic code and codon ambiguities have been discovered in both prokaryotes and eukaryotes, suggesting that the genetic code is flexible. However, the molecular mechanisms of evolution of the standard genetic code and the cellular role(s) of codon ambiguity are not understood. In this thesis we have engineered codon ambiguity in the eukaryotic model Sacharomyces cerevisiae to clarify its cellular consequences. As expected, such ambiguity had a strong negative impact on growth rate, viability and protein aggregation, indicating that it affects fitness negatively. However, it also created important selective advantages in certain environmental conditions, suggesting that it has the capacity to increase adaptation potential under environmental variable conditions. The overall negative impact of genetic code ambiguity on protein aggregation and cell viability, suggest that codon ambiguity may have catastrophic consequences in multicellular organisms. In particular in tissues with low cell turnover rate, namely in the brain. This hypothesis is supported by the recent discovery of a mutation in the mouse alanyl-tRNA synthetase which creates ambiguity at alanine codons and results in rapid loss of Purking neurons, neurodegeneration and premature death. Therefore, genetic code ambiguity can have both, negative or positive outcomes, depending on cell type and environmental conditions.
id RCAP_e38d590fafe5276c58742eb4d3b9c770
oai_identifier_str oai:ria.ua.pt:10773/7775
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling mRNA mistranslation in Saccharomyces cerevisiaeBiologia molecularCódigo genéticoTradução genéticaExpressão genéticaFenotiposThe genetic code is defined as a series of biochemical reactions that establish the cellular rules that translate DNA into protein information. It was established more than 3.5 billion years ago and it is one of the most conserved features of life. Over the years, several alterations to the standard genetic code and codon ambiguities have been discovered in both prokaryotes and eukaryotes, suggesting that the genetic code is flexible. However, the molecular mechanisms of evolution of the standard genetic code and the cellular role(s) of codon ambiguity are not understood. In this thesis we have engineered codon ambiguity in the eukaryotic model Sacharomyces cerevisiae to clarify its cellular consequences. As expected, such ambiguity had a strong negative impact on growth rate, viability and protein aggregation, indicating that it affects fitness negatively. However, it also created important selective advantages in certain environmental conditions, suggesting that it has the capacity to increase adaptation potential under environmental variable conditions. The overall negative impact of genetic code ambiguity on protein aggregation and cell viability, suggest that codon ambiguity may have catastrophic consequences in multicellular organisms. In particular in tissues with low cell turnover rate, namely in the brain. This hypothesis is supported by the recent discovery of a mutation in the mouse alanyl-tRNA synthetase which creates ambiguity at alanine codons and results in rapid loss of Purking neurons, neurodegeneration and premature death. Therefore, genetic code ambiguity can have both, negative or positive outcomes, depending on cell type and environmental conditions.O código genético pode ser definido como uma série de reacções bioquímicas que estabelecem as regras pelas quais as sequências nucleotídicas do material genético são traduzidas em proteínas. Apresenta um elevado grau de conservação e estima-se que tenha tido a sua origem há mais de 3.5 mil milhões de anos. Ao longo dos últimos anos foram identificadas várias alterações ao código genético em procariotas e eucariotas e foram identificados codões ambíguos, sugerindo que o código genético é flexível. Contudo, os mecanismos de evolução das alterações ao código genético são mal conhecidos e a função da ambiguidade de codões é totalmente desconhecida. Nesta tese criámos codões ambíguos no organismo modelo Saccharomyces cerevisiae e estudámos os fenótipos resultantes de tal ambiguidade. Os resultados mostram que, tal como seria expectável, a ambiguidade do código genético afecta negativamente o crescimento, viabilidade celular e induz a produção de agregados proteicos em S. cerevisiae. Contudo, tal ambiguidade também resultou em variabilidade fenótipica, sendo alguns dos fenótipos vantajosos em determinados condições ambientais. Ou seja, os nossos dados mostram que a ambiguidade do código genético afecta negativamente a capacidade competitiva de S. cerevisiae em meio rico em nutrientes, mas aumenta a sua capacidade adaptativa em condições ambientais variáveis. Os efeitos negativos da ambiguidade do código genético, nomeadamente a agregação de proteínas, sugerem que tal ambiguidade poderá ser catastrófica em organismos multicelulares em que a taxa de renovação celular é baixa. Esta hipótese é suportada pela recente descoberta de uma mutação na alaniltRNA sintetase do ratinho que induz ambiguidade em codões de alanina e resulta numa forte perda de neurónios de Purkinge, neurodegeneração e morte prematura. Ou seja, a ambiguidade do código genético pode ter consequências negativas ou positivas dependendo do tipo de células e das condições ambientais.Universidade de Aveiro2018-07-20T14:00:36Z2012-01-04T00:00:00Z2012-01-042013-12-28T09:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/7775engPaulo, Jorge Fernando Ferreira de Sousainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:13:31Zoai:ria.ua.pt:10773/7775Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:45:21.810608Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv mRNA mistranslation in Saccharomyces cerevisiae
title mRNA mistranslation in Saccharomyces cerevisiae
spellingShingle mRNA mistranslation in Saccharomyces cerevisiae
Paulo, Jorge Fernando Ferreira de Sousa
Biologia molecular
Código genético
Tradução genética
Expressão genética
Fenotipos
title_short mRNA mistranslation in Saccharomyces cerevisiae
title_full mRNA mistranslation in Saccharomyces cerevisiae
title_fullStr mRNA mistranslation in Saccharomyces cerevisiae
title_full_unstemmed mRNA mistranslation in Saccharomyces cerevisiae
title_sort mRNA mistranslation in Saccharomyces cerevisiae
author Paulo, Jorge Fernando Ferreira de Sousa
author_facet Paulo, Jorge Fernando Ferreira de Sousa
author_role author
dc.contributor.author.fl_str_mv Paulo, Jorge Fernando Ferreira de Sousa
dc.subject.por.fl_str_mv Biologia molecular
Código genético
Tradução genética
Expressão genética
Fenotipos
topic Biologia molecular
Código genético
Tradução genética
Expressão genética
Fenotipos
description The genetic code is defined as a series of biochemical reactions that establish the cellular rules that translate DNA into protein information. It was established more than 3.5 billion years ago and it is one of the most conserved features of life. Over the years, several alterations to the standard genetic code and codon ambiguities have been discovered in both prokaryotes and eukaryotes, suggesting that the genetic code is flexible. However, the molecular mechanisms of evolution of the standard genetic code and the cellular role(s) of codon ambiguity are not understood. In this thesis we have engineered codon ambiguity in the eukaryotic model Sacharomyces cerevisiae to clarify its cellular consequences. As expected, such ambiguity had a strong negative impact on growth rate, viability and protein aggregation, indicating that it affects fitness negatively. However, it also created important selective advantages in certain environmental conditions, suggesting that it has the capacity to increase adaptation potential under environmental variable conditions. The overall negative impact of genetic code ambiguity on protein aggregation and cell viability, suggest that codon ambiguity may have catastrophic consequences in multicellular organisms. In particular in tissues with low cell turnover rate, namely in the brain. This hypothesis is supported by the recent discovery of a mutation in the mouse alanyl-tRNA synthetase which creates ambiguity at alanine codons and results in rapid loss of Purking neurons, neurodegeneration and premature death. Therefore, genetic code ambiguity can have both, negative or positive outcomes, depending on cell type and environmental conditions.
publishDate 2012
dc.date.none.fl_str_mv 2012-01-04T00:00:00Z
2012-01-04
2013-12-28T09:00:00Z
2018-07-20T14:00:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/7775
url http://hdl.handle.net/10773/7775
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137505682915328