Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/141399 |
Resumo: | Requests for caring for and monitoring the health and safety of older adults are increasing nowadays and form a topic of great social interest. One of the issues that lead to serious concerns is human falls, especially among aged people. Computer vision techniques can be used to identify fall events, and Deep Learning methods can detect them with optimum accuracy. Such imaging-based solutions are a good alternative to body-worn solutions. This article proposes a novel human fall detection solution based on the Fast Pose Estimation method. The solution uses Time-Distributed Convolutional Long Short-Term Memory (TD-CNN-LSTM) and 1Dimentional Convolutional Neural Network (1D-CNN) models, to classify the data extracted from image frames, and achieved high accuracies: 98 and 97% for the 1D-CNN and TD-CNN-LSTM models, respectively. Therefore, by applying the Fast Pose Estimation method, which has not been used before for this purpose, the proposed solution is an effective contribution to accurate human fall detection, which can be deployed in edge devices due to its low computational and memory demands. |
id |
RCAP_c6932424232f71549afd9793181763dc |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/141399 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Using Deep Neural Networks for Human Fall Detection Based on Pose EstimationCiências Tecnológicas, Ciências da engenharia e tecnologiasTechnological sciences, Engineering and technologyRequests for caring for and monitoring the health and safety of older adults are increasing nowadays and form a topic of great social interest. One of the issues that lead to serious concerns is human falls, especially among aged people. Computer vision techniques can be used to identify fall events, and Deep Learning methods can detect them with optimum accuracy. Such imaging-based solutions are a good alternative to body-worn solutions. This article proposes a novel human fall detection solution based on the Fast Pose Estimation method. The solution uses Time-Distributed Convolutional Long Short-Term Memory (TD-CNN-LSTM) and 1Dimentional Convolutional Neural Network (1D-CNN) models, to classify the data extracted from image frames, and achieved high accuracies: 98 and 97% for the 1D-CNN and TD-CNN-LSTM models, respectively. Therefore, by applying the Fast Pose Estimation method, which has not been used before for this purpose, the proposed solution is an effective contribution to accurate human fall detection, which can be deployed in edge devices due to its low computational and memory demands.2022-062022-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfimage/jpeghttps://hdl.handle.net/10216/141399eng1424-321010.3390/s22124544Mohammadamin SalimiJosé J.M. MachadoJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-27T09:25:33Zoai:repositorio-aberto.up.pt:10216/141399Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-27T09:25:33Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation |
title |
Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation |
spellingShingle |
Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation Mohammadamin Salimi Ciências Tecnológicas, Ciências da engenharia e tecnologias Technological sciences, Engineering and technology |
title_short |
Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation |
title_full |
Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation |
title_fullStr |
Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation |
title_full_unstemmed |
Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation |
title_sort |
Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation |
author |
Mohammadamin Salimi |
author_facet |
Mohammadamin Salimi José J.M. Machado João Manuel R. S. Tavares |
author_role |
author |
author2 |
José J.M. Machado João Manuel R. S. Tavares |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mohammadamin Salimi José J.M. Machado João Manuel R. S. Tavares |
dc.subject.por.fl_str_mv |
Ciências Tecnológicas, Ciências da engenharia e tecnologias Technological sciences, Engineering and technology |
topic |
Ciências Tecnológicas, Ciências da engenharia e tecnologias Technological sciences, Engineering and technology |
description |
Requests for caring for and monitoring the health and safety of older adults are increasing nowadays and form a topic of great social interest. One of the issues that lead to serious concerns is human falls, especially among aged people. Computer vision techniques can be used to identify fall events, and Deep Learning methods can detect them with optimum accuracy. Such imaging-based solutions are a good alternative to body-worn solutions. This article proposes a novel human fall detection solution based on the Fast Pose Estimation method. The solution uses Time-Distributed Convolutional Long Short-Term Memory (TD-CNN-LSTM) and 1Dimentional Convolutional Neural Network (1D-CNN) models, to classify the data extracted from image frames, and achieved high accuracies: 98 and 97% for the 1D-CNN and TD-CNN-LSTM models, respectively. Therefore, by applying the Fast Pose Estimation method, which has not been used before for this purpose, the proposed solution is an effective contribution to accurate human fall detection, which can be deployed in edge devices due to its low computational and memory demands. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06 2022-06-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/141399 |
url |
https://hdl.handle.net/10216/141399 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1424-3210 10.3390/s22124544 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf image/jpeg |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817548295540572161 |