Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation

Detalhes bibliográficos
Autor(a) principal: Mohammadamin Salimi
Data de Publicação: 2022
Outros Autores: José J.M. Machado, João Manuel R. S. Tavares
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/141399
Resumo: Requests for caring for and monitoring the health and safety of older adults are increasing nowadays and form a topic of great social interest. One of the issues that lead to serious concerns is human falls, especially among aged people. Computer vision techniques can be used to identify fall events, and Deep Learning methods can detect them with optimum accuracy. Such imaging-based solutions are a good alternative to body-worn solutions. This article proposes a novel human fall detection solution based on the Fast Pose Estimation method. The solution uses Time-Distributed Convolutional Long Short-Term Memory (TD-CNN-LSTM) and 1Dimentional Convolutional Neural Network (1D-CNN) models, to classify the data extracted from image frames, and achieved high accuracies: 98 and 97% for the 1D-CNN and TD-CNN-LSTM models, respectively. Therefore, by applying the Fast Pose Estimation method, which has not been used before for this purpose, the proposed solution is an effective contribution to accurate human fall detection, which can be deployed in edge devices due to its low computational and memory demands.
id RCAP_c6932424232f71549afd9793181763dc
oai_identifier_str oai:repositorio-aberto.up.pt:10216/141399
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Using Deep Neural Networks for Human Fall Detection Based on Pose EstimationCiências Tecnológicas, Ciências da engenharia e tecnologiasTechnological sciences, Engineering and technologyRequests for caring for and monitoring the health and safety of older adults are increasing nowadays and form a topic of great social interest. One of the issues that lead to serious concerns is human falls, especially among aged people. Computer vision techniques can be used to identify fall events, and Deep Learning methods can detect them with optimum accuracy. Such imaging-based solutions are a good alternative to body-worn solutions. This article proposes a novel human fall detection solution based on the Fast Pose Estimation method. The solution uses Time-Distributed Convolutional Long Short-Term Memory (TD-CNN-LSTM) and 1Dimentional Convolutional Neural Network (1D-CNN) models, to classify the data extracted from image frames, and achieved high accuracies: 98 and 97% for the 1D-CNN and TD-CNN-LSTM models, respectively. Therefore, by applying the Fast Pose Estimation method, which has not been used before for this purpose, the proposed solution is an effective contribution to accurate human fall detection, which can be deployed in edge devices due to its low computational and memory demands.2022-062022-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfimage/jpeghttps://hdl.handle.net/10216/141399eng1424-321010.3390/s22124544Mohammadamin SalimiJosé J.M. MachadoJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-27T09:25:33Zoai:repositorio-aberto.up.pt:10216/141399Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-27T09:25:33Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation
title Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation
spellingShingle Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation
Mohammadamin Salimi
Ciências Tecnológicas, Ciências da engenharia e tecnologias
Technological sciences, Engineering and technology
title_short Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation
title_full Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation
title_fullStr Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation
title_full_unstemmed Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation
title_sort Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation
author Mohammadamin Salimi
author_facet Mohammadamin Salimi
José J.M. Machado
João Manuel R. S. Tavares
author_role author
author2 José J.M. Machado
João Manuel R. S. Tavares
author2_role author
author
dc.contributor.author.fl_str_mv Mohammadamin Salimi
José J.M. Machado
João Manuel R. S. Tavares
dc.subject.por.fl_str_mv Ciências Tecnológicas, Ciências da engenharia e tecnologias
Technological sciences, Engineering and technology
topic Ciências Tecnológicas, Ciências da engenharia e tecnologias
Technological sciences, Engineering and technology
description Requests for caring for and monitoring the health and safety of older adults are increasing nowadays and form a topic of great social interest. One of the issues that lead to serious concerns is human falls, especially among aged people. Computer vision techniques can be used to identify fall events, and Deep Learning methods can detect them with optimum accuracy. Such imaging-based solutions are a good alternative to body-worn solutions. This article proposes a novel human fall detection solution based on the Fast Pose Estimation method. The solution uses Time-Distributed Convolutional Long Short-Term Memory (TD-CNN-LSTM) and 1Dimentional Convolutional Neural Network (1D-CNN) models, to classify the data extracted from image frames, and achieved high accuracies: 98 and 97% for the 1D-CNN and TD-CNN-LSTM models, respectively. Therefore, by applying the Fast Pose Estimation method, which has not been used before for this purpose, the proposed solution is an effective contribution to accurate human fall detection, which can be deployed in edge devices due to its low computational and memory demands.
publishDate 2022
dc.date.none.fl_str_mv 2022-06
2022-06-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/141399
url https://hdl.handle.net/10216/141399
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1424-3210
10.3390/s22124544
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
image/jpeg
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817548295540572161