On the training of artificial neural networks with radial basis function using optimum-path forest clustering

Detalhes bibliográficos
Autor(a) principal: Gustavo H. Rosa
Data de Publicação: 2014
Outros Autores: Kelton A. P. Costa, Leandro A. Passos Júnior, João P. Papa, Alexandre X. Falcão, João Manuel R. S. Tavares
Tipo de documento: Livro
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/76475
Resumo: In this paper, we show how to improve the Radial Basis Function Neural Networks effectiveness by using the Optimum-Path Forest clustering algorithm, since it computes the number of clusters on-the-fly, which can be very interesting for finding the Gaussians that cover the feature space. Some commonly used approaches for this task, such as the well known k-means, require the number of classes/clusters previous its performance. Although the number of classes is known in supervised applications, the real number of clusters is extremely hard to figure out, since one class may be represented by more than one cluster. Experiments over 9 datasets together with statistical analysis have shown the suitability of OPF clustering for the RBF training step.
id RCAP_d91a50c3ae287ae9e174b56a4f66c5d9
oai_identifier_str oai:repositorio-aberto.up.pt:10216/76475
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On the training of artificial neural networks with radial basis function using optimum-path forest clusteringCiências Tecnológicas, Ciências da engenharia e tecnologiasTechnological sciences, Engineering and technologyIn this paper, we show how to improve the Radial Basis Function Neural Networks effectiveness by using the Optimum-Path Forest clustering algorithm, since it computes the number of clusters on-the-fly, which can be very interesting for finding the Gaussians that cover the feature space. Some commonly used approaches for this task, such as the well known k-means, require the number of classes/clusters previous its performance. Although the number of classes is known in supervised applications, the real number of clusters is extremely hard to figure out, since one class may be represented by more than one cluster. Experiments over 9 datasets together with statistical analysis have shown the suitability of OPF clustering for the RBF training step.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/76475eng10.1109/ICPR.2014.262Gustavo H. RosaKelton A. P. CostaLeandro A. Passos JúniorJoão P. PapaAlexandre X. FalcãoJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-27T06:36:28Zoai:repositorio-aberto.up.pt:10216/76475Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-27T06:36:28Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On the training of artificial neural networks with radial basis function using optimum-path forest clustering
title On the training of artificial neural networks with radial basis function using optimum-path forest clustering
spellingShingle On the training of artificial neural networks with radial basis function using optimum-path forest clustering
Gustavo H. Rosa
Ciências Tecnológicas, Ciências da engenharia e tecnologias
Technological sciences, Engineering and technology
title_short On the training of artificial neural networks with radial basis function using optimum-path forest clustering
title_full On the training of artificial neural networks with radial basis function using optimum-path forest clustering
title_fullStr On the training of artificial neural networks with radial basis function using optimum-path forest clustering
title_full_unstemmed On the training of artificial neural networks with radial basis function using optimum-path forest clustering
title_sort On the training of artificial neural networks with radial basis function using optimum-path forest clustering
author Gustavo H. Rosa
author_facet Gustavo H. Rosa
Kelton A. P. Costa
Leandro A. Passos Júnior
João P. Papa
Alexandre X. Falcão
João Manuel R. S. Tavares
author_role author
author2 Kelton A. P. Costa
Leandro A. Passos Júnior
João P. Papa
Alexandre X. Falcão
João Manuel R. S. Tavares
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Gustavo H. Rosa
Kelton A. P. Costa
Leandro A. Passos Júnior
João P. Papa
Alexandre X. Falcão
João Manuel R. S. Tavares
dc.subject.por.fl_str_mv Ciências Tecnológicas, Ciências da engenharia e tecnologias
Technological sciences, Engineering and technology
topic Ciências Tecnológicas, Ciências da engenharia e tecnologias
Technological sciences, Engineering and technology
description In this paper, we show how to improve the Radial Basis Function Neural Networks effectiveness by using the Optimum-Path Forest clustering algorithm, since it computes the number of clusters on-the-fly, which can be very interesting for finding the Gaussians that cover the feature space. Some commonly used approaches for this task, such as the well known k-means, require the number of classes/clusters previous its performance. Although the number of classes is known in supervised applications, the real number of clusters is extremely hard to figure out, since one class may be represented by more than one cluster. Experiments over 9 datasets together with statistical analysis have shown the suitability of OPF clustering for the RBF training step.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/76475
url https://hdl.handle.net/10216/76475
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1109/ICPR.2014.262
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817547326205460480