On the training of artificial neural networks with radial basis function using optimum-path forest clustering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , |
Tipo de documento: | Livro |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/76475 |
Resumo: | In this paper, we show how to improve the Radial Basis Function Neural Networks effectiveness by using the Optimum-Path Forest clustering algorithm, since it computes the number of clusters on-the-fly, which can be very interesting for finding the Gaussians that cover the feature space. Some commonly used approaches for this task, such as the well known k-means, require the number of classes/clusters previous its performance. Although the number of classes is known in supervised applications, the real number of clusters is extremely hard to figure out, since one class may be represented by more than one cluster. Experiments over 9 datasets together with statistical analysis have shown the suitability of OPF clustering for the RBF training step. |
id |
RCAP_d91a50c3ae287ae9e174b56a4f66c5d9 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/76475 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the training of artificial neural networks with radial basis function using optimum-path forest clusteringCiências Tecnológicas, Ciências da engenharia e tecnologiasTechnological sciences, Engineering and technologyIn this paper, we show how to improve the Radial Basis Function Neural Networks effectiveness by using the Optimum-Path Forest clustering algorithm, since it computes the number of clusters on-the-fly, which can be very interesting for finding the Gaussians that cover the feature space. Some commonly used approaches for this task, such as the well known k-means, require the number of classes/clusters previous its performance. Although the number of classes is known in supervised applications, the real number of clusters is extremely hard to figure out, since one class may be represented by more than one cluster. Experiments over 9 datasets together with statistical analysis have shown the suitability of OPF clustering for the RBF training step.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/76475eng10.1109/ICPR.2014.262Gustavo H. RosaKelton A. P. CostaLeandro A. Passos JúniorJoão P. PapaAlexandre X. FalcãoJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-27T06:36:28Zoai:repositorio-aberto.up.pt:10216/76475Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-27T06:36:28Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the training of artificial neural networks with radial basis function using optimum-path forest clustering |
title |
On the training of artificial neural networks with radial basis function using optimum-path forest clustering |
spellingShingle |
On the training of artificial neural networks with radial basis function using optimum-path forest clustering Gustavo H. Rosa Ciências Tecnológicas, Ciências da engenharia e tecnologias Technological sciences, Engineering and technology |
title_short |
On the training of artificial neural networks with radial basis function using optimum-path forest clustering |
title_full |
On the training of artificial neural networks with radial basis function using optimum-path forest clustering |
title_fullStr |
On the training of artificial neural networks with radial basis function using optimum-path forest clustering |
title_full_unstemmed |
On the training of artificial neural networks with radial basis function using optimum-path forest clustering |
title_sort |
On the training of artificial neural networks with radial basis function using optimum-path forest clustering |
author |
Gustavo H. Rosa |
author_facet |
Gustavo H. Rosa Kelton A. P. Costa Leandro A. Passos Júnior João P. Papa Alexandre X. Falcão João Manuel R. S. Tavares |
author_role |
author |
author2 |
Kelton A. P. Costa Leandro A. Passos Júnior João P. Papa Alexandre X. Falcão João Manuel R. S. Tavares |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Gustavo H. Rosa Kelton A. P. Costa Leandro A. Passos Júnior João P. Papa Alexandre X. Falcão João Manuel R. S. Tavares |
dc.subject.por.fl_str_mv |
Ciências Tecnológicas, Ciências da engenharia e tecnologias Technological sciences, Engineering and technology |
topic |
Ciências Tecnológicas, Ciências da engenharia e tecnologias Technological sciences, Engineering and technology |
description |
In this paper, we show how to improve the Radial Basis Function Neural Networks effectiveness by using the Optimum-Path Forest clustering algorithm, since it computes the number of clusters on-the-fly, which can be very interesting for finding the Gaussians that cover the feature space. Some commonly used approaches for this task, such as the well known k-means, require the number of classes/clusters previous its performance. Although the number of classes is known in supervised applications, the real number of clusters is extremely hard to figure out, since one class may be represented by more than one cluster. Experiments over 9 datasets together with statistical analysis have shown the suitability of OPF clustering for the RBF training step. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/76475 |
url |
https://hdl.handle.net/10216/76475 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/ICPR.2014.262 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817547326205460480 |