Intelligent system for fault detection in wind turbines gearbox

Detalhes bibliográficos
Autor(a) principal: R. F. Mesquita Brandão
Data de Publicação: 2015
Outros Autores: J. A. Beleza Carvalho, Fernando Maciel Barbosa
Tipo de documento: Livro
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/81688
Resumo: New generations of turbines have lower repair and maintenance costs than the previous generation. This is justified by the development of new components and materials. As the power of newer turbines is usually substantially larger, it is possible to get an economy of scale and lower maintenance costs per kW of rated power. This is simply because it is not needed to service a large turbine more often than a small one. New methods of earlier detection of faults are needed. The use of all information from SCADA (Supervisory Control and Data Acquisition) system can be useful, but it is necessary to develop tools to deal with bigger amount of information. Neural networks can help and turn possible new maintenance and operation schemes.
id RCAP_c6a560fb7bb686eba95dc980b1adc759
oai_identifier_str oai:repositorio-aberto.up.pt:10216/81688
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Intelligent system for fault detection in wind turbines gearboxEngenharia electrotécnica, Engenharia electrotécnica, electrónica e informáticaElectrical engineering, Electrical engineering, Electronic engineering, Information engineeringNew generations of turbines have lower repair and maintenance costs than the previous generation. This is justified by the development of new components and materials. As the power of newer turbines is usually substantially larger, it is possible to get an economy of scale and lower maintenance costs per kW of rated power. This is simply because it is not needed to service a large turbine more often than a small one. New methods of earlier detection of faults are needed. The use of all information from SCADA (Supervisory Control and Data Acquisition) system can be useful, but it is necessary to develop tools to deal with bigger amount of information. Neural networks can help and turn possible new maintenance and operation schemes.20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/81688eng10.1109/PTC.2015.7232407R. F. Mesquita BrandãoJ. A. Beleza CarvalhoFernando Maciel Barbosainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:54:39Zoai:repositorio-aberto.up.pt:10216/81688Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:50:32.965089Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Intelligent system for fault detection in wind turbines gearbox
title Intelligent system for fault detection in wind turbines gearbox
spellingShingle Intelligent system for fault detection in wind turbines gearbox
R. F. Mesquita Brandão
Engenharia electrotécnica, Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electrical engineering, Electronic engineering, Information engineering
title_short Intelligent system for fault detection in wind turbines gearbox
title_full Intelligent system for fault detection in wind turbines gearbox
title_fullStr Intelligent system for fault detection in wind turbines gearbox
title_full_unstemmed Intelligent system for fault detection in wind turbines gearbox
title_sort Intelligent system for fault detection in wind turbines gearbox
author R. F. Mesquita Brandão
author_facet R. F. Mesquita Brandão
J. A. Beleza Carvalho
Fernando Maciel Barbosa
author_role author
author2 J. A. Beleza Carvalho
Fernando Maciel Barbosa
author2_role author
author
dc.contributor.author.fl_str_mv R. F. Mesquita Brandão
J. A. Beleza Carvalho
Fernando Maciel Barbosa
dc.subject.por.fl_str_mv Engenharia electrotécnica, Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electrical engineering, Electronic engineering, Information engineering
topic Engenharia electrotécnica, Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electrical engineering, Electronic engineering, Information engineering
description New generations of turbines have lower repair and maintenance costs than the previous generation. This is justified by the development of new components and materials. As the power of newer turbines is usually substantially larger, it is possible to get an economy of scale and lower maintenance costs per kW of rated power. This is simply because it is not needed to service a large turbine more often than a small one. New methods of earlier detection of faults are needed. The use of all information from SCADA (Supervisory Control and Data Acquisition) system can be useful, but it is necessary to develop tools to deal with bigger amount of information. Neural networks can help and turn possible new maintenance and operation schemes.
publishDate 2015
dc.date.none.fl_str_mv 2015
2015-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/81688
url https://hdl.handle.net/10216/81688
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1109/PTC.2015.7232407
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135824960290816