Intelligent system for fault detection in wind turbines gearbox
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Livro |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/81688 |
Resumo: | New generations of turbines have lower repair and maintenance costs than the previous generation. This is justified by the development of new components and materials. As the power of newer turbines is usually substantially larger, it is possible to get an economy of scale and lower maintenance costs per kW of rated power. This is simply because it is not needed to service a large turbine more often than a small one. New methods of earlier detection of faults are needed. The use of all information from SCADA (Supervisory Control and Data Acquisition) system can be useful, but it is necessary to develop tools to deal with bigger amount of information. Neural networks can help and turn possible new maintenance and operation schemes. |
id |
RCAP_c6a560fb7bb686eba95dc980b1adc759 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/81688 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Intelligent system for fault detection in wind turbines gearboxEngenharia electrotécnica, Engenharia electrotécnica, electrónica e informáticaElectrical engineering, Electrical engineering, Electronic engineering, Information engineeringNew generations of turbines have lower repair and maintenance costs than the previous generation. This is justified by the development of new components and materials. As the power of newer turbines is usually substantially larger, it is possible to get an economy of scale and lower maintenance costs per kW of rated power. This is simply because it is not needed to service a large turbine more often than a small one. New methods of earlier detection of faults are needed. The use of all information from SCADA (Supervisory Control and Data Acquisition) system can be useful, but it is necessary to develop tools to deal with bigger amount of information. Neural networks can help and turn possible new maintenance and operation schemes.20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/81688eng10.1109/PTC.2015.7232407R. F. Mesquita BrandãoJ. A. Beleza CarvalhoFernando Maciel Barbosainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:54:39Zoai:repositorio-aberto.up.pt:10216/81688Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:50:32.965089Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Intelligent system for fault detection in wind turbines gearbox |
title |
Intelligent system for fault detection in wind turbines gearbox |
spellingShingle |
Intelligent system for fault detection in wind turbines gearbox R. F. Mesquita Brandão Engenharia electrotécnica, Engenharia electrotécnica, electrónica e informática Electrical engineering, Electrical engineering, Electronic engineering, Information engineering |
title_short |
Intelligent system for fault detection in wind turbines gearbox |
title_full |
Intelligent system for fault detection in wind turbines gearbox |
title_fullStr |
Intelligent system for fault detection in wind turbines gearbox |
title_full_unstemmed |
Intelligent system for fault detection in wind turbines gearbox |
title_sort |
Intelligent system for fault detection in wind turbines gearbox |
author |
R. F. Mesquita Brandão |
author_facet |
R. F. Mesquita Brandão J. A. Beleza Carvalho Fernando Maciel Barbosa |
author_role |
author |
author2 |
J. A. Beleza Carvalho Fernando Maciel Barbosa |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
R. F. Mesquita Brandão J. A. Beleza Carvalho Fernando Maciel Barbosa |
dc.subject.por.fl_str_mv |
Engenharia electrotécnica, Engenharia electrotécnica, electrónica e informática Electrical engineering, Electrical engineering, Electronic engineering, Information engineering |
topic |
Engenharia electrotécnica, Engenharia electrotécnica, electrónica e informática Electrical engineering, Electrical engineering, Electronic engineering, Information engineering |
description |
New generations of turbines have lower repair and maintenance costs than the previous generation. This is justified by the development of new components and materials. As the power of newer turbines is usually substantially larger, it is possible to get an economy of scale and lower maintenance costs per kW of rated power. This is simply because it is not needed to service a large turbine more often than a small one. New methods of earlier detection of faults are needed. The use of all information from SCADA (Supervisory Control and Data Acquisition) system can be useful, but it is necessary to develop tools to deal with bigger amount of information. Neural networks can help and turn possible new maintenance and operation schemes. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2015-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/81688 |
url |
https://hdl.handle.net/10216/81688 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/PTC.2015.7232407 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135824960290816 |