Bio-electronic transducers to interact with cancer cells
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/15153 |
Resumo: | This thesis is focused on the study of electrophysiological signals in populations of cancer cells measured using extracellular electrodes. The cells under study are derived from cells known as glia cells. Glia cells are part of the brain but are significantly different from neurons. An important function of glia cells is to regulate communication between neurons. Glia cells can mutate and turn into cancer cells. When this happens, they give rise to very aggressive tumors (gliomas). The study of electrophysiological signals in cells of this type is relevant because in principle it can give information about how this type of cells is organized and communicates to perform simple tasks, such as migrating or proliferating. In contrast to neurons, or cardiomyocytes, glia cells do not generate action potentials and therefore, are included in the class of non-electrogenic cells. However, glia cells have developed an information transmission mechanism that is based on the generation of a local ionic oscillation. This oscillation can travel to neighboring cells like a wave. To generate the oscillation, the cells generate a flow of ions, for example of calcium or sodium ions, the associated electrical oscillations are known as calcium or sodium waves, respectively. Ionic oscillations can travel long distances (millimeters). For the oscillation to travel through the cell population, cells must be connected to form a compact biological tissue. The formation of the wave also requires that the cells have the ability to synchronize their activity. Unlike an action potential, that is an oscillation generated by an individual cell, the oscillations generated by glia cells are a property of a set of cells that synchronize to generate electrical fluctuation. Note that both the action potential and the wave generated by the glia cells are both electrical signals that travel like waves. However, there are important differences in the characteristics of the two signals. An action potential is a fast signal (meters / s) and short duration (milliseconds). A calcium wave is an oscillation that can last for several seconds and propagates through the population of cells at speeds of a few tens of micrometers per second. A calcium wave is typically a thousand times slower than an action potential. The measurement and interpretation of action potentials using extracellular electrodes is well documented in the literature. As for the electrical waves generated by the synchronized activity of cells, the knowledge is very poor. Until now, this type of bio-electrical signaling mechanism has been studied using optical markers and fluorescence techniques. Although, optical techniques can visualize the wave, they suffer from a set of limitations, both from experimental as well as from a biological point of view. For example, optical markers have a relatively short lifetime (hours), and can be toxic to cells. Additionally, light can disturb the measurements. Optical florescence has in its favor the fact that it is a selective technique and allows to know exactly the ionic species that is involved in the process. Electrical techniques cannot differentiate which ion is involved, but they can observe oscillations in real time in a totally noninvasive way and for extended periods (weeks or months). The existing literature on the signal analysis and processing of signals that are result from synchronized cell activity is practically non-existent. This scientific area is still in its infancy. This thesis aims to contribute to increase our knowledge about this type of bio-electric signaling. The objective of the work presented in this thesis was to study how the design of extracellular electrodes determines the shape of the measured electrical signal. Since the signal is an electric wave that travels through the cell population, it is obvious that the shape of the signal is essentially determined by a number of factors, namely the; (i) number of cells that are able to synchronize, (ii) electrode design, (iii) electrode active area, and even (iv) spatial arrangement of the electrodes in relation to the wave propagation direction. This study processed a large number of signals collected using electrodes with different areas and geometries. The signals were first cataloged and classified according to the shape of the measured signal. Then, relationships were established between the power of the measured signal and the active area of the measured electrode, the periodicity of the signal and the spacing of the sensor electrodes. The components of the signal that vary exponentially have been quantified to determine the physical origin of the exponential behavior, or in other words if it originates in a biological process or if it is determined by the time constant (physics) of the electrode. Finally, several signal patterns were characterized and classified. Among the most interesting patterns, a pattern in which the frequency increases following an exponential law (called a blueshift) and a pattern where the frequency decays exponentially (redshift) were observed. The results of the signal analysis and their relationship with the geometry of the electrodes allowed us to quantify the role of the electrode in defining the shape and the duration of the signal. Guidelines for the optimization of the electrodes was also an important outcome of this thesis. Finally, it is important to note that from the biological point of view it is expected that the optimization of the electrodes will allow to decode signaling patterns that correspond to specific biological instructions. For example, assuming that cell migration is a process instructed by an electrical oscillation with a certain pattern, decoding this pattern will eventually enable us to inhibit cell migration, thus paving the way for new technologies for cancer therapy. The limitations of using radiotherapy and chemotherapy in the brain make electrical techniques particularly appealing to treat brain tumors. |
id |
RCAP_c706b0b92db78b481efd03fe7195988a |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/15153 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Bio-electronic transducers to interact with cancer cellsIntercellularMessengers incurableBrainIn homeostasisGlioma cellsDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasThis thesis is focused on the study of electrophysiological signals in populations of cancer cells measured using extracellular electrodes. The cells under study are derived from cells known as glia cells. Glia cells are part of the brain but are significantly different from neurons. An important function of glia cells is to regulate communication between neurons. Glia cells can mutate and turn into cancer cells. When this happens, they give rise to very aggressive tumors (gliomas). The study of electrophysiological signals in cells of this type is relevant because in principle it can give information about how this type of cells is organized and communicates to perform simple tasks, such as migrating or proliferating. In contrast to neurons, or cardiomyocytes, glia cells do not generate action potentials and therefore, are included in the class of non-electrogenic cells. However, glia cells have developed an information transmission mechanism that is based on the generation of a local ionic oscillation. This oscillation can travel to neighboring cells like a wave. To generate the oscillation, the cells generate a flow of ions, for example of calcium or sodium ions, the associated electrical oscillations are known as calcium or sodium waves, respectively. Ionic oscillations can travel long distances (millimeters). For the oscillation to travel through the cell population, cells must be connected to form a compact biological tissue. The formation of the wave also requires that the cells have the ability to synchronize their activity. Unlike an action potential, that is an oscillation generated by an individual cell, the oscillations generated by glia cells are a property of a set of cells that synchronize to generate electrical fluctuation. Note that both the action potential and the wave generated by the glia cells are both electrical signals that travel like waves. However, there are important differences in the characteristics of the two signals. An action potential is a fast signal (meters / s) and short duration (milliseconds). A calcium wave is an oscillation that can last for several seconds and propagates through the population of cells at speeds of a few tens of micrometers per second. A calcium wave is typically a thousand times slower than an action potential. The measurement and interpretation of action potentials using extracellular electrodes is well documented in the literature. As for the electrical waves generated by the synchronized activity of cells, the knowledge is very poor. Until now, this type of bio-electrical signaling mechanism has been studied using optical markers and fluorescence techniques. Although, optical techniques can visualize the wave, they suffer from a set of limitations, both from experimental as well as from a biological point of view. For example, optical markers have a relatively short lifetime (hours), and can be toxic to cells. Additionally, light can disturb the measurements. Optical florescence has in its favor the fact that it is a selective technique and allows to know exactly the ionic species that is involved in the process. Electrical techniques cannot differentiate which ion is involved, but they can observe oscillations in real time in a totally noninvasive way and for extended periods (weeks or months). The existing literature on the signal analysis and processing of signals that are result from synchronized cell activity is practically non-existent. This scientific area is still in its infancy. This thesis aims to contribute to increase our knowledge about this type of bio-electric signaling. The objective of the work presented in this thesis was to study how the design of extracellular electrodes determines the shape of the measured electrical signal. Since the signal is an electric wave that travels through the cell population, it is obvious that the shape of the signal is essentially determined by a number of factors, namely the; (i) number of cells that are able to synchronize, (ii) electrode design, (iii) electrode active area, and even (iv) spatial arrangement of the electrodes in relation to the wave propagation direction. This study processed a large number of signals collected using electrodes with different areas and geometries. The signals were first cataloged and classified according to the shape of the measured signal. Then, relationships were established between the power of the measured signal and the active area of the measured electrode, the periodicity of the signal and the spacing of the sensor electrodes. The components of the signal that vary exponentially have been quantified to determine the physical origin of the exponential behavior, or in other words if it originates in a biological process or if it is determined by the time constant (physics) of the electrode. Finally, several signal patterns were characterized and classified. Among the most interesting patterns, a pattern in which the frequency increases following an exponential law (called a blueshift) and a pattern where the frequency decays exponentially (redshift) were observed. The results of the signal analysis and their relationship with the geometry of the electrodes allowed us to quantify the role of the electrode in defining the shape and the duration of the signal. Guidelines for the optimization of the electrodes was also an important outcome of this thesis. Finally, it is important to note that from the biological point of view it is expected that the optimization of the electrodes will allow to decode signaling patterns that correspond to specific biological instructions. For example, assuming that cell migration is a process instructed by an electrical oscillation with a certain pattern, decoding this pattern will eventually enable us to inhibit cell migration, thus paving the way for new technologies for cancer therapy. The limitations of using radiotherapy and chemotherapy in the brain make electrical techniques particularly appealing to treat brain tumors.Esta tese incidiu sobre o estudo de sinais eletrofisiológicos em populações de células cancerosas, medidos usando elétrodos extra-celulares. As células em estudo derivam de células conhecidas por células da glia. As células da glia fazem parte do cérebro, mas são significativamente diferentes dos neurónios. Uma função importante das células da glia é regular a comunicação entre neurónios. As células da glia podem sofrer mutações e transformar-se em células cancerosas. Quando isso acontece dão origem a tumores muito agressivos (gliomas). O estudo de sinais eletrofisiológicos em células deste tipo é relevante porque em princípio podem dar informação sobre como este tipo de células se organizam e comunicam para realizar tarefas simples, como migrar ou proliferar. Em contraste com os neurónios, ou com os cardiomiócitos, as células da glia não geram potenciais de ação e por isso são incluídas na classe das células não electrogénicas. No entanto, as células da glia desenvolveram um mecanismo de transmissão de informação que se baseia na geração de uma oscilação local de iões. Esta oscilação pode-se propagar às células vizinhas como uma onda. Para gerar a oscilação as células geram um fluxo de iões, por exemplo iões de cálcio ou de sódio, as oscilações elétricas associadas são conhecidas por ondas de cálcio ou de sódio respetivamente. As oscilações iónicas conseguem viajar a longas distâncias (milímetros). Para que a oscilação viaje pela população de células é preciso que as células estejam ligadas umas as outras formando um tecido biológico compacto. A formação da onda requer também que as células tenham a capacidade de sincronizar sua atividade. Ao contrário de um potencial de ação que é uma oscilação gerada por uma célula individual, as oscilações geradas pelas células da glia são uma propriedade de um conjunto de células que se sincronizam para gerar a flutuação elétrica. Note-se que, quer o potencial de ação, quer a onda gerada pelas células da glia são ambas sinais elétricos que viajam como ondas. No entanto, existem diferenças importantes nas características dos dois sinais. Um potencial de ação é um sinal rápido (metros /s) e de curta duração (milissegundos). Uma onda de cálcio é uma oscilação que pode durar vários segundos e propaga-se pela população das células a velocidades de algumas de dezenas de micrómetros por segundo. Uma onda de cálcio é tipicamente mil vez mais lenta que um potencial de ação. A medição e a interpretação dos potenciais de ação usando elétrodos extra-celulares está bem documentada na literatura. Já no que diz respeito às ondas elétricas geradas pela atividade sincronizada de células, o conhecimento é praticamente inexistente. Até agora, este tipo de sinalização elétrica tem sido estudado usando marcadores óticos e técnicas de fluorescência que permitem visualizar a oscilação a viajar pela população das células. Apesar das técnicas óticas conseguirem visualizar a onda, sofrem de um conjunto de limitações quer experimentais quer biológicas. Por exemplo, os marcadores óticos tem um tempo de vida relativamente curto (horas), e podem ser tóxicos para as células. Adicionalmente, a iluminação pode perturbar as células e as medidas. A florescência, tem a seu favor o facto de ser uma técnica seletiva e permitir determinar a espécie iónica que está envolvida no processo. As técnicas elétricas não conseguem diferenciar qual o ião envolvido, mas podem observar as oscilações em tempo real de uma forma totalmente não invasiva por períodos extensos (semanas ou meses). A literatura existente sobre a análise e o processamento dos sinais elétricos que são recolhidos por elétrodos extra-celulares e que resultam de uma atividade sincronizadas das células, é praticamente inexistente. Esta área científica ainda está na sua infância. Esta tese pretende contribuir para aumentar os nossos conhecimentos sobre este tipo de sinalização bioelétrica. O objetivo concreto do trabalho apresentado nesta tese foi estudar como o desenho dos elétrodos extra-celulares determinam a forma do sinal elétrico medido. Sendo o sinal uma onda elétrica que viaja pela população das células, é óbvio que a forma do sinal é essencialmente determinada por um conjunto de fatores, nomeadamente pelo; (i) número de células que é capaz de sincronizar, (ii) desenho do elétrodo, (iii) área ativa do elétrodo, e até pela (iv) disposição espacial dos elétrodos em relação à direção de propagação da onda. Este estudo processou um número elevado de sinais recolhido usando elétrodos com áreas e geometrias diferentes. Os sinais foram primeiro catalogados e classificados de acordo com a forma do sinal medido. De seguida foram estabelecidas relações entre a potência do sinal medido e a área ativa do elétrodo medido, a periodicidade do sinal e o espaçamento dos elétrodos sensores. As componentes do sinal que variam exponencialmente foram quantificadas para determinar a origem física do comportamento exponencial, ou por outras palavras se tem origem num processo biológico ou se é determinada pela constante de tempo (física) do elétrodo. Por último, vários padrões de sinais foram caracterizados e classificados. Entre os padrões mais interessantes foi observado um padrão de sinais em que a frequência do sinal cresce seguindo uma lei exponencial (designado de desvio para o azul) e um padrão onde a frequência do sinal decai também exponencialmente (desvio para o vermelho). Os resultados da análise dos sinais e da sua relação com a geometria dos elétrodos permitiu quantificar o papel do elétrodo na definição da forma e duração do sinal. Um outro resultado importante deste trabalho foi a fornecer diretrizes para a otimização do desenho dos elétrodos. Por último, é importante referir que do ponto de vista biológico espera-se que a otimização dos elétrodos permita num futuro próximo descodificar os padrões de sinalização que correspondem a instruções biológicas especificas. Por exemplo, assumindo que a migração celular é um processo instruído por uma oscilação elétrica com um determinado padrão, a descodificação deste padrão permitirá eventualmente instruir as células a inibir a migração, abrindo desta forma o caminho para novas formas de terapia do cancro. As limitações do uso da radioterapia e da quimioterapia no cérebro tornam as técnicas elétricas particularmente apelativas para combater tumores no cérebro.O presente trabalho foi parcialmente financiado pelas seguintes instituições: Instituto de Telecomunicações (IT), UID/EEA/50008/2020 Fundação para a Ciência e Tecnologia (FCT) no âmbito do projeto: IMPLANTABLE ORGANIC DEVICES FOR ADVANCED THERAPIES (INNOVATE) ref: PTDC/EEIAUT/ 5442/2014Gomes, Henrique L.SapientiaBrázio, Diogo Luzia2022-03-02T01:30:16Z2020-11-182020-11-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.1/15153TID:202652017enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:27:34Zoai:sapientia.ualg.pt:10400.1/15153Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:06:03.404616Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Bio-electronic transducers to interact with cancer cells |
title |
Bio-electronic transducers to interact with cancer cells |
spellingShingle |
Bio-electronic transducers to interact with cancer cells Brázio, Diogo Luzia Intercellular Messengers incurable Brain In homeostasis Glioma cells Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
title_short |
Bio-electronic transducers to interact with cancer cells |
title_full |
Bio-electronic transducers to interact with cancer cells |
title_fullStr |
Bio-electronic transducers to interact with cancer cells |
title_full_unstemmed |
Bio-electronic transducers to interact with cancer cells |
title_sort |
Bio-electronic transducers to interact with cancer cells |
author |
Brázio, Diogo Luzia |
author_facet |
Brázio, Diogo Luzia |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gomes, Henrique L. Sapientia |
dc.contributor.author.fl_str_mv |
Brázio, Diogo Luzia |
dc.subject.por.fl_str_mv |
Intercellular Messengers incurable Brain In homeostasis Glioma cells Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
topic |
Intercellular Messengers incurable Brain In homeostasis Glioma cells Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
description |
This thesis is focused on the study of electrophysiological signals in populations of cancer cells measured using extracellular electrodes. The cells under study are derived from cells known as glia cells. Glia cells are part of the brain but are significantly different from neurons. An important function of glia cells is to regulate communication between neurons. Glia cells can mutate and turn into cancer cells. When this happens, they give rise to very aggressive tumors (gliomas). The study of electrophysiological signals in cells of this type is relevant because in principle it can give information about how this type of cells is organized and communicates to perform simple tasks, such as migrating or proliferating. In contrast to neurons, or cardiomyocytes, glia cells do not generate action potentials and therefore, are included in the class of non-electrogenic cells. However, glia cells have developed an information transmission mechanism that is based on the generation of a local ionic oscillation. This oscillation can travel to neighboring cells like a wave. To generate the oscillation, the cells generate a flow of ions, for example of calcium or sodium ions, the associated electrical oscillations are known as calcium or sodium waves, respectively. Ionic oscillations can travel long distances (millimeters). For the oscillation to travel through the cell population, cells must be connected to form a compact biological tissue. The formation of the wave also requires that the cells have the ability to synchronize their activity. Unlike an action potential, that is an oscillation generated by an individual cell, the oscillations generated by glia cells are a property of a set of cells that synchronize to generate electrical fluctuation. Note that both the action potential and the wave generated by the glia cells are both electrical signals that travel like waves. However, there are important differences in the characteristics of the two signals. An action potential is a fast signal (meters / s) and short duration (milliseconds). A calcium wave is an oscillation that can last for several seconds and propagates through the population of cells at speeds of a few tens of micrometers per second. A calcium wave is typically a thousand times slower than an action potential. The measurement and interpretation of action potentials using extracellular electrodes is well documented in the literature. As for the electrical waves generated by the synchronized activity of cells, the knowledge is very poor. Until now, this type of bio-electrical signaling mechanism has been studied using optical markers and fluorescence techniques. Although, optical techniques can visualize the wave, they suffer from a set of limitations, both from experimental as well as from a biological point of view. For example, optical markers have a relatively short lifetime (hours), and can be toxic to cells. Additionally, light can disturb the measurements. Optical florescence has in its favor the fact that it is a selective technique and allows to know exactly the ionic species that is involved in the process. Electrical techniques cannot differentiate which ion is involved, but they can observe oscillations in real time in a totally noninvasive way and for extended periods (weeks or months). The existing literature on the signal analysis and processing of signals that are result from synchronized cell activity is practically non-existent. This scientific area is still in its infancy. This thesis aims to contribute to increase our knowledge about this type of bio-electric signaling. The objective of the work presented in this thesis was to study how the design of extracellular electrodes determines the shape of the measured electrical signal. Since the signal is an electric wave that travels through the cell population, it is obvious that the shape of the signal is essentially determined by a number of factors, namely the; (i) number of cells that are able to synchronize, (ii) electrode design, (iii) electrode active area, and even (iv) spatial arrangement of the electrodes in relation to the wave propagation direction. This study processed a large number of signals collected using electrodes with different areas and geometries. The signals were first cataloged and classified according to the shape of the measured signal. Then, relationships were established between the power of the measured signal and the active area of the measured electrode, the periodicity of the signal and the spacing of the sensor electrodes. The components of the signal that vary exponentially have been quantified to determine the physical origin of the exponential behavior, or in other words if it originates in a biological process or if it is determined by the time constant (physics) of the electrode. Finally, several signal patterns were characterized and classified. Among the most interesting patterns, a pattern in which the frequency increases following an exponential law (called a blueshift) and a pattern where the frequency decays exponentially (redshift) were observed. The results of the signal analysis and their relationship with the geometry of the electrodes allowed us to quantify the role of the electrode in defining the shape and the duration of the signal. Guidelines for the optimization of the electrodes was also an important outcome of this thesis. Finally, it is important to note that from the biological point of view it is expected that the optimization of the electrodes will allow to decode signaling patterns that correspond to specific biological instructions. For example, assuming that cell migration is a process instructed by an electrical oscillation with a certain pattern, decoding this pattern will eventually enable us to inhibit cell migration, thus paving the way for new technologies for cancer therapy. The limitations of using radiotherapy and chemotherapy in the brain make electrical techniques particularly appealing to treat brain tumors. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-18 2020-11-18T00:00:00Z 2022-03-02T01:30:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/15153 TID:202652017 |
url |
http://hdl.handle.net/10400.1/15153 |
identifier_str_mv |
TID:202652017 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133301628207104 |