Text Mining of Airbnb Reviews: A holistic approach on reviewers’ opinions and topics distribution
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/127908 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Marketing Intelligence |
id |
RCAP_c7c2577ac3b6ed122fcedbc8ba57578a |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/127908 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Text Mining of Airbnb Reviews: A holistic approach on reviewers’ opinions and topics distributionAirbnbText MiningOnline ReviewsSocial NormsMarket NormsDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Marketing IntelligenceThis thesis aims to perform a holistic investigation concerning how Airbnb accommodation features and hosts’ attributes influence guest’s reviews and how are the main topics distributed. A dataset containing almost 4 million reviews from major touristic cities in the world (Milan, Lisbon, Amsterdam, Toronto, San-Francisco, and Sydney) was used for the text mining analysis to uncover the reviews’ social and market norms, as well as the guests’ sentiments and topics distribution. This research uses both Mallet LDA (Latent Dirichlet Allocation) and Word2Vec methods to unveil the semantic structure and similarity between data in this study. This approach will allow hospitality providers to understand the impact of underlying factors on reviewers’ opinions for further improvement of their services. Finally, this study develops a predictive unbiased model to forecast the review’s scores, with an accuracy of 90.70%.Pinto, Diego CostaRUNRodrigues, Ana Catarina Guinote Fernandes Alves2021-11-18T14:51:09Z2021-11-082021-11-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/127908TID:202791106enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:07:42Zoai:run.unl.pt:10362/127908Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:46:13.872346Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Text Mining of Airbnb Reviews: A holistic approach on reviewers’ opinions and topics distribution |
title |
Text Mining of Airbnb Reviews: A holistic approach on reviewers’ opinions and topics distribution |
spellingShingle |
Text Mining of Airbnb Reviews: A holistic approach on reviewers’ opinions and topics distribution Rodrigues, Ana Catarina Guinote Fernandes Alves Airbnb Text Mining Online Reviews Social Norms Market Norms |
title_short |
Text Mining of Airbnb Reviews: A holistic approach on reviewers’ opinions and topics distribution |
title_full |
Text Mining of Airbnb Reviews: A holistic approach on reviewers’ opinions and topics distribution |
title_fullStr |
Text Mining of Airbnb Reviews: A holistic approach on reviewers’ opinions and topics distribution |
title_full_unstemmed |
Text Mining of Airbnb Reviews: A holistic approach on reviewers’ opinions and topics distribution |
title_sort |
Text Mining of Airbnb Reviews: A holistic approach on reviewers’ opinions and topics distribution |
author |
Rodrigues, Ana Catarina Guinote Fernandes Alves |
author_facet |
Rodrigues, Ana Catarina Guinote Fernandes Alves |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pinto, Diego Costa RUN |
dc.contributor.author.fl_str_mv |
Rodrigues, Ana Catarina Guinote Fernandes Alves |
dc.subject.por.fl_str_mv |
Airbnb Text Mining Online Reviews Social Norms Market Norms |
topic |
Airbnb Text Mining Online Reviews Social Norms Market Norms |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Marketing Intelligence |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-18T14:51:09Z 2021-11-08 2021-11-08T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/127908 TID:202791106 |
url |
http://hdl.handle.net/10362/127908 |
identifier_str_mv |
TID:202791106 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138066282053632 |