Airbnb customer satisfaction through online reviews

Detalhes bibliográficos
Autor(a) principal: Barbosa, Sara Raquel Pascoal
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/19160
Resumo: With the development and better access to the Internet, mobile devices and social media, people began to post online their opinions and reviews of products and services. These comments influence new customer buying decisions and qualify companies to gain superior insight into their customers’ experience and satisfaction. Thus, it has become essential for companies to adopt methods capable of analyzing this information and extracting its value in order to better serve their customers’ unmet needs. The area of tourism and hospitality was one of the most affected by this trend. For this reason, this study will focus on the reviews of an online platform, Airbnb, so that it also studies the technological disruption in the mentioned industry. This new method of home-sharing has gained more and more followers for its advantages and differences compared to common hotels, which has triggered increasing researcher. Airbnb’s guest reviews describe each guest’s experiences (the positive and negative aspects of their stay) and will be studied through Text Mining. This consists of several methods capable of analyzing large amounts of unstructured information such as Big Data, in order to better understand overall customer satisfaction, including the factors that will influence it. Results show that distinct dimensions are valued by guests and they are different in different areas of Sintra.
id RCAP_e51cd950367c66086951db3f4bfc958c
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/19160
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Airbnb customer satisfaction through online reviewsReviewsAirbnbText miningSatisfactionComentáriosSatisfaçãoWith the development and better access to the Internet, mobile devices and social media, people began to post online their opinions and reviews of products and services. These comments influence new customer buying decisions and qualify companies to gain superior insight into their customers’ experience and satisfaction. Thus, it has become essential for companies to adopt methods capable of analyzing this information and extracting its value in order to better serve their customers’ unmet needs. The area of tourism and hospitality was one of the most affected by this trend. For this reason, this study will focus on the reviews of an online platform, Airbnb, so that it also studies the technological disruption in the mentioned industry. This new method of home-sharing has gained more and more followers for its advantages and differences compared to common hotels, which has triggered increasing researcher. Airbnb’s guest reviews describe each guest’s experiences (the positive and negative aspects of their stay) and will be studied through Text Mining. This consists of several methods capable of analyzing large amounts of unstructured information such as Big Data, in order to better understand overall customer satisfaction, including the factors that will influence it. Results show that distinct dimensions are valued by guests and they are different in different areas of Sintra.Com o desenvolvimento e maior acesso à Internet, dispositivos móveis e redes sociais, as pessoas começaram a publicar online as suas opiniões e avaliações de produtos e serviços. Estes comentários influenciam as decisões de compra de novos clientes e permitem às empresas obter um maior conhecimento sobre a experiência e satisfação dos seus clientes. Assim, tornou-se imprescindível para as estas, adotarem métodos capazes de analisar esta informação e extrair valor da mesma de modo a conseguirem atender de forma mais ajustada às necessidades dos seus clientes. A área da hospitalidade foi uma das mais afetadas por esta tendência. Por esse motivo, este estudo vai ser focado nas reviews de uma plataforma online, o Airbnb, juntando assim também uma disrupção tecnológica desta mesma área. Este novo método de alojamento partilhado tem ganho cada mais seguidores pelas suas vantagens e diferenças em relação a hotéis mais comuns, mas também tem sido um assunto cada vez mais estudado por investigadores. Os comentários estudados do Airbnb descrevem as experiências de cada hóspede relativamente ao alojamento onde permaneceram e são estudados através de Text Mining. Este consiste em vários métodos capazes de analisar grandes volumes de informação não estruturados como Big data para consequentemente compreender melhor a satisfação geral dos clientes, nomeadamente os fatores que a vão influenciar. Os resultados mostram que existem várias dimensões valorizadas e diferentes para as zonas estudadas em Sintra.2019-12-12T17:23:21Z2019-11-12T00:00:00Z2019-11-122019-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/19160TID:202321894engBarbosa, Sara Raquel Pascoalinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:46:26Zoai:repositorio.iscte-iul.pt:10071/19160Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:22:19.595603Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Airbnb customer satisfaction through online reviews
title Airbnb customer satisfaction through online reviews
spellingShingle Airbnb customer satisfaction through online reviews
Barbosa, Sara Raquel Pascoal
Reviews
Airbnb
Text mining
Satisfaction
Comentários
Satisfação
title_short Airbnb customer satisfaction through online reviews
title_full Airbnb customer satisfaction through online reviews
title_fullStr Airbnb customer satisfaction through online reviews
title_full_unstemmed Airbnb customer satisfaction through online reviews
title_sort Airbnb customer satisfaction through online reviews
author Barbosa, Sara Raquel Pascoal
author_facet Barbosa, Sara Raquel Pascoal
author_role author
dc.contributor.author.fl_str_mv Barbosa, Sara Raquel Pascoal
dc.subject.por.fl_str_mv Reviews
Airbnb
Text mining
Satisfaction
Comentários
Satisfação
topic Reviews
Airbnb
Text mining
Satisfaction
Comentários
Satisfação
description With the development and better access to the Internet, mobile devices and social media, people began to post online their opinions and reviews of products and services. These comments influence new customer buying decisions and qualify companies to gain superior insight into their customers’ experience and satisfaction. Thus, it has become essential for companies to adopt methods capable of analyzing this information and extracting its value in order to better serve their customers’ unmet needs. The area of tourism and hospitality was one of the most affected by this trend. For this reason, this study will focus on the reviews of an online platform, Airbnb, so that it also studies the technological disruption in the mentioned industry. This new method of home-sharing has gained more and more followers for its advantages and differences compared to common hotels, which has triggered increasing researcher. Airbnb’s guest reviews describe each guest’s experiences (the positive and negative aspects of their stay) and will be studied through Text Mining. This consists of several methods capable of analyzing large amounts of unstructured information such as Big Data, in order to better understand overall customer satisfaction, including the factors that will influence it. Results show that distinct dimensions are valued by guests and they are different in different areas of Sintra.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-12T17:23:21Z
2019-11-12T00:00:00Z
2019-11-12
2019-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/19160
TID:202321894
url http://hdl.handle.net/10071/19160
identifier_str_mv TID:202321894
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134785002536960