Airbnb customer satisfaction through online reviews
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/19160 |
Resumo: | With the development and better access to the Internet, mobile devices and social media, people began to post online their opinions and reviews of products and services. These comments influence new customer buying decisions and qualify companies to gain superior insight into their customers’ experience and satisfaction. Thus, it has become essential for companies to adopt methods capable of analyzing this information and extracting its value in order to better serve their customers’ unmet needs. The area of tourism and hospitality was one of the most affected by this trend. For this reason, this study will focus on the reviews of an online platform, Airbnb, so that it also studies the technological disruption in the mentioned industry. This new method of home-sharing has gained more and more followers for its advantages and differences compared to common hotels, which has triggered increasing researcher. Airbnb’s guest reviews describe each guest’s experiences (the positive and negative aspects of their stay) and will be studied through Text Mining. This consists of several methods capable of analyzing large amounts of unstructured information such as Big Data, in order to better understand overall customer satisfaction, including the factors that will influence it. Results show that distinct dimensions are valued by guests and they are different in different areas of Sintra. |
id |
RCAP_e51cd950367c66086951db3f4bfc958c |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/19160 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Airbnb customer satisfaction through online reviewsReviewsAirbnbText miningSatisfactionComentáriosSatisfaçãoWith the development and better access to the Internet, mobile devices and social media, people began to post online their opinions and reviews of products and services. These comments influence new customer buying decisions and qualify companies to gain superior insight into their customers’ experience and satisfaction. Thus, it has become essential for companies to adopt methods capable of analyzing this information and extracting its value in order to better serve their customers’ unmet needs. The area of tourism and hospitality was one of the most affected by this trend. For this reason, this study will focus on the reviews of an online platform, Airbnb, so that it also studies the technological disruption in the mentioned industry. This new method of home-sharing has gained more and more followers for its advantages and differences compared to common hotels, which has triggered increasing researcher. Airbnb’s guest reviews describe each guest’s experiences (the positive and negative aspects of their stay) and will be studied through Text Mining. This consists of several methods capable of analyzing large amounts of unstructured information such as Big Data, in order to better understand overall customer satisfaction, including the factors that will influence it. Results show that distinct dimensions are valued by guests and they are different in different areas of Sintra.Com o desenvolvimento e maior acesso à Internet, dispositivos móveis e redes sociais, as pessoas começaram a publicar online as suas opiniões e avaliações de produtos e serviços. Estes comentários influenciam as decisões de compra de novos clientes e permitem às empresas obter um maior conhecimento sobre a experiência e satisfação dos seus clientes. Assim, tornou-se imprescindível para as estas, adotarem métodos capazes de analisar esta informação e extrair valor da mesma de modo a conseguirem atender de forma mais ajustada às necessidades dos seus clientes. A área da hospitalidade foi uma das mais afetadas por esta tendência. Por esse motivo, este estudo vai ser focado nas reviews de uma plataforma online, o Airbnb, juntando assim também uma disrupção tecnológica desta mesma área. Este novo método de alojamento partilhado tem ganho cada mais seguidores pelas suas vantagens e diferenças em relação a hotéis mais comuns, mas também tem sido um assunto cada vez mais estudado por investigadores. Os comentários estudados do Airbnb descrevem as experiências de cada hóspede relativamente ao alojamento onde permaneceram e são estudados através de Text Mining. Este consiste em vários métodos capazes de analisar grandes volumes de informação não estruturados como Big data para consequentemente compreender melhor a satisfação geral dos clientes, nomeadamente os fatores que a vão influenciar. Os resultados mostram que existem várias dimensões valorizadas e diferentes para as zonas estudadas em Sintra.2019-12-12T17:23:21Z2019-11-12T00:00:00Z2019-11-122019-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/19160TID:202321894engBarbosa, Sara Raquel Pascoalinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:46:26Zoai:repositorio.iscte-iul.pt:10071/19160Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:22:19.595603Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Airbnb customer satisfaction through online reviews |
title |
Airbnb customer satisfaction through online reviews |
spellingShingle |
Airbnb customer satisfaction through online reviews Barbosa, Sara Raquel Pascoal Reviews Airbnb Text mining Satisfaction Comentários Satisfação |
title_short |
Airbnb customer satisfaction through online reviews |
title_full |
Airbnb customer satisfaction through online reviews |
title_fullStr |
Airbnb customer satisfaction through online reviews |
title_full_unstemmed |
Airbnb customer satisfaction through online reviews |
title_sort |
Airbnb customer satisfaction through online reviews |
author |
Barbosa, Sara Raquel Pascoal |
author_facet |
Barbosa, Sara Raquel Pascoal |
author_role |
author |
dc.contributor.author.fl_str_mv |
Barbosa, Sara Raquel Pascoal |
dc.subject.por.fl_str_mv |
Reviews Airbnb Text mining Satisfaction Comentários Satisfação |
topic |
Reviews Airbnb Text mining Satisfaction Comentários Satisfação |
description |
With the development and better access to the Internet, mobile devices and social media, people began to post online their opinions and reviews of products and services. These comments influence new customer buying decisions and qualify companies to gain superior insight into their customers’ experience and satisfaction. Thus, it has become essential for companies to adopt methods capable of analyzing this information and extracting its value in order to better serve their customers’ unmet needs. The area of tourism and hospitality was one of the most affected by this trend. For this reason, this study will focus on the reviews of an online platform, Airbnb, so that it also studies the technological disruption in the mentioned industry. This new method of home-sharing has gained more and more followers for its advantages and differences compared to common hotels, which has triggered increasing researcher. Airbnb’s guest reviews describe each guest’s experiences (the positive and negative aspects of their stay) and will be studied through Text Mining. This consists of several methods capable of analyzing large amounts of unstructured information such as Big Data, in order to better understand overall customer satisfaction, including the factors that will influence it. Results show that distinct dimensions are valued by guests and they are different in different areas of Sintra. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-12T17:23:21Z 2019-11-12T00:00:00Z 2019-11-12 2019-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/19160 TID:202321894 |
url |
http://hdl.handle.net/10071/19160 |
identifier_str_mv |
TID:202321894 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134785002536960 |