Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.1186/s13071-017-2205-6 |
Resumo: | Ferrão, J. L., Mendes, J. M., & Painho, M. (2017). Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique. Parasites and Vectors, 10(1), 1-12. DOI: 10.1186/s13071-017-2205-6 |
id |
RCAP_c7f2b225d431fb7181b68041c2e7af0c |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/27406 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modelling the influence of climate on malaria occurrence in Chimoio Municipality, MozambiqueChimoioMalariaModellingPrecision public healthParasitologyInfectious DiseasesSDG 3 - Good Health and Well-beingFerrão, J. L., Mendes, J. M., & Painho, M. (2017). Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique. Parasites and Vectors, 10(1), 1-12. DOI: 10.1186/s13071-017-2205-6Background: Mozambique was recently ranked fifth in the African continent for the number of cases of malaria. In Chimoio municipality cases of malaria are increasing annually, contrary to the decreasing trend in Africa. As malaria transmission is influenced to a large extent by climatic conditions, modelling this relationship can provide useful insights for designing precision health measures for malaria control. There is a scarcity of information on the association between climatic variability and malaria transmission risk in Mozambique in general, and in Chimoio in particular. Therefore, the aim of this study is to model the association between climatic variables and malaria cases on a weekly basis, to help policy makers find adequate measures for malaria control and eradication. Methods: Time series analysis was conducted using data on weekly climatic variables and weekly malaria cases (counts) in Chimoio municipality, from 2006 to 2014. All data were analysed using SPSS-20, R 3.3.2 and BioEstat 5.0. Cross-correlation analysis, linear processes, namely ARIMA models and regression modelling, were used to develop the final model. Results: Between 2006 and 2014, 490,561 cases of malaria were recorded in Chimoio. Both malaria and climatic data exhibit weekly and yearly systematic fluctuations. Cross-correlation analysis showed that mean temperature and precipitation present significantly lagged correlations with malaria cases. An ARIMA model (2,1,0) (2,1,1)52, and a regression model for a Box-Cox transformed number of malaria cases with lags 1, 2 and 3 of weekly malaria cases and lags 6 and 7 of weekly mean temperature and lags 12 of precipitation were fitted. Although, both produced similar widths for prediction intervals, the last was able to anticipate malaria outbreak more accurately. Conclusion: The Chimoio climate seems ideal for malaria occurrence. Malaria occurrence peaks during January to March in Chimoio. As the lag effect between climatic events and malaria occurrence is important for the prediction of malaria cases, this can be used for designing public precision health measures. The model can be used for planning specific measures for Chimoio municipality. Prospective and multidisciplinary research involving researchers from different fields is welcomed to improve the effect of climatic factors and other factors in malaria cases.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNFerrão, João LuísMendes, Jorge M.Painho, Marco2017-12-28T23:10:11Z2017-05-252017-05-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12application/pdfhttps://doi.org/10.1186/s13071-017-2205-6engPURE: 3259416http://www.scopus.com/inward/record.url?scp=85019704675&partnerID=8YFLogxKhttps://doi.org/10.1186/s13071-017-2205-6info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:14:29Zoai:run.unl.pt:10362/27406Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:28:40.668332Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique |
title |
Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique |
spellingShingle |
Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique Ferrão, João Luís Chimoio Malaria Modelling Precision public health Parasitology Infectious Diseases SDG 3 - Good Health and Well-being |
title_short |
Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique |
title_full |
Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique |
title_fullStr |
Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique |
title_full_unstemmed |
Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique |
title_sort |
Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique |
author |
Ferrão, João Luís |
author_facet |
Ferrão, João Luís Mendes, Jorge M. Painho, Marco |
author_role |
author |
author2 |
Mendes, Jorge M. Painho, Marco |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Ferrão, João Luís Mendes, Jorge M. Painho, Marco |
dc.subject.por.fl_str_mv |
Chimoio Malaria Modelling Precision public health Parasitology Infectious Diseases SDG 3 - Good Health and Well-being |
topic |
Chimoio Malaria Modelling Precision public health Parasitology Infectious Diseases SDG 3 - Good Health and Well-being |
description |
Ferrão, J. L., Mendes, J. M., & Painho, M. (2017). Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique. Parasites and Vectors, 10(1), 1-12. DOI: 10.1186/s13071-017-2205-6 |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-28T23:10:11Z 2017-05-25 2017-05-25T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1186/s13071-017-2205-6 |
url |
https://doi.org/10.1186/s13071-017-2205-6 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PURE: 3259416 http://www.scopus.com/inward/record.url?scp=85019704675&partnerID=8YFLogxK https://doi.org/10.1186/s13071-017-2205-6 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
12 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137912099438592 |