Identification and molecular characterization of bone-related micrornas: functional implications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/7080 |
Resumo: | MicroRNAs (miRNAs) are a conserved class of small RNAs providing a post-transcriptional mechanism for fine-tuning of intricate physiological and pathological cellular processes, such as those affecting development. Skeletogenesis however, was so far poorly investigated and mainly focused on mammalian models, with a general lack of knowledge concerning other vertebrates. We aimed at the identification of bone-related miRNAs and their characterization from an evolutionary perspective, using fish (mostly zebrafish) as model, in comparison to mammalian systems. First, we focused on miR-223, a miRNA that was associated with bone remodelling. We demonstrated that miR-223 genomic organization/context and primary/secondary structures are largely maintained between human and zebrafish. As in mammals, miR-223 expression in zebrafish was highly correlated with hematopoietic events and osteoclastogenesis. Finally, miR-223 targets identified in mammals were also predicted in zebrafish, supporting a functional conservation of this miRNA. In a second set of experiments, we studied the biological role of miR-29a, a bone-related miRNA that was fairly investigated in mammals, but with no mineralogenic effects yet demonstrated. We took advantage of our fish bone-derived systems to explore miR-29a mineralogenic effects through gain-of-function experiments. We demonstrated a strong stimulation of this process through a mechanism probably involving the canonical Wnt signalling. Once more, through bioinformatics analysis, patterns of expression and target prediction/validation, we provided evidences for miR-29 conservation throughout evolution. Finally, we explored miR-214 putative roles on skeleton formation in vertebrates. Although our initial hypothesis of miR-214 involvement in osteogenesis was recently demonstrated by Wang et al. (2013), we proceeded with our investigation and finally showed that miR-214 is also associated with chondrogenesis. Overexpression of miR-214 in ATDC5 cells mitigated differentiation and down-regulated Mgp and Osteocalcin, probably by targeting Atf4. This work provides novel evidence that some miRNAs have conserved functions across vertebrates and, probably, conserved regulatory mechanisms of action. |
id |
RCAP_c899d1276cc1543bdc97bbdb228848e6 |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/7080 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Identification and molecular characterization of bone-related micrornas: functional implicationsCiências biomédicasConservaçãoPeixe-zebraOssosManipulação genéticaMicroRNAs (miRNAs) are a conserved class of small RNAs providing a post-transcriptional mechanism for fine-tuning of intricate physiological and pathological cellular processes, such as those affecting development. Skeletogenesis however, was so far poorly investigated and mainly focused on mammalian models, with a general lack of knowledge concerning other vertebrates. We aimed at the identification of bone-related miRNAs and their characterization from an evolutionary perspective, using fish (mostly zebrafish) as model, in comparison to mammalian systems. First, we focused on miR-223, a miRNA that was associated with bone remodelling. We demonstrated that miR-223 genomic organization/context and primary/secondary structures are largely maintained between human and zebrafish. As in mammals, miR-223 expression in zebrafish was highly correlated with hematopoietic events and osteoclastogenesis. Finally, miR-223 targets identified in mammals were also predicted in zebrafish, supporting a functional conservation of this miRNA. In a second set of experiments, we studied the biological role of miR-29a, a bone-related miRNA that was fairly investigated in mammals, but with no mineralogenic effects yet demonstrated. We took advantage of our fish bone-derived systems to explore miR-29a mineralogenic effects through gain-of-function experiments. We demonstrated a strong stimulation of this process through a mechanism probably involving the canonical Wnt signalling. Once more, through bioinformatics analysis, patterns of expression and target prediction/validation, we provided evidences for miR-29 conservation throughout evolution. Finally, we explored miR-214 putative roles on skeleton formation in vertebrates. Although our initial hypothesis of miR-214 involvement in osteogenesis was recently demonstrated by Wang et al. (2013), we proceeded with our investigation and finally showed that miR-214 is also associated with chondrogenesis. Overexpression of miR-214 in ATDC5 cells mitigated differentiation and down-regulated Mgp and Osteocalcin, probably by targeting Atf4. This work provides novel evidence that some miRNAs have conserved functions across vertebrates and, probably, conserved regulatory mechanisms of action.Cancela, LeonorTiago, DanielGautvik, KaareSapientiaRoberto, Vania Palma2017-12-10T01:30:10Z201420142014-01-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.1/7080enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-29T10:39:06Zoai:sapientia.ualg.pt:10400.1/7080Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-29T10:39:06Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Identification and molecular characterization of bone-related micrornas: functional implications |
title |
Identification and molecular characterization of bone-related micrornas: functional implications |
spellingShingle |
Identification and molecular characterization of bone-related micrornas: functional implications Roberto, Vania Palma Ciências biomédicas Conservação Peixe-zebra Ossos Manipulação genética |
title_short |
Identification and molecular characterization of bone-related micrornas: functional implications |
title_full |
Identification and molecular characterization of bone-related micrornas: functional implications |
title_fullStr |
Identification and molecular characterization of bone-related micrornas: functional implications |
title_full_unstemmed |
Identification and molecular characterization of bone-related micrornas: functional implications |
title_sort |
Identification and molecular characterization of bone-related micrornas: functional implications |
author |
Roberto, Vania Palma |
author_facet |
Roberto, Vania Palma |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cancela, Leonor Tiago, Daniel Gautvik, Kaare Sapientia |
dc.contributor.author.fl_str_mv |
Roberto, Vania Palma |
dc.subject.por.fl_str_mv |
Ciências biomédicas Conservação Peixe-zebra Ossos Manipulação genética |
topic |
Ciências biomédicas Conservação Peixe-zebra Ossos Manipulação genética |
description |
MicroRNAs (miRNAs) are a conserved class of small RNAs providing a post-transcriptional mechanism for fine-tuning of intricate physiological and pathological cellular processes, such as those affecting development. Skeletogenesis however, was so far poorly investigated and mainly focused on mammalian models, with a general lack of knowledge concerning other vertebrates. We aimed at the identification of bone-related miRNAs and their characterization from an evolutionary perspective, using fish (mostly zebrafish) as model, in comparison to mammalian systems. First, we focused on miR-223, a miRNA that was associated with bone remodelling. We demonstrated that miR-223 genomic organization/context and primary/secondary structures are largely maintained between human and zebrafish. As in mammals, miR-223 expression in zebrafish was highly correlated with hematopoietic events and osteoclastogenesis. Finally, miR-223 targets identified in mammals were also predicted in zebrafish, supporting a functional conservation of this miRNA. In a second set of experiments, we studied the biological role of miR-29a, a bone-related miRNA that was fairly investigated in mammals, but with no mineralogenic effects yet demonstrated. We took advantage of our fish bone-derived systems to explore miR-29a mineralogenic effects through gain-of-function experiments. We demonstrated a strong stimulation of this process through a mechanism probably involving the canonical Wnt signalling. Once more, through bioinformatics analysis, patterns of expression and target prediction/validation, we provided evidences for miR-29 conservation throughout evolution. Finally, we explored miR-214 putative roles on skeleton formation in vertebrates. Although our initial hypothesis of miR-214 involvement in osteogenesis was recently demonstrated by Wang et al. (2013), we proceeded with our investigation and finally showed that miR-214 is also associated with chondrogenesis. Overexpression of miR-214 in ATDC5 cells mitigated differentiation and down-regulated Mgp and Osteocalcin, probably by targeting Atf4. This work provides novel evidence that some miRNAs have conserved functions across vertebrates and, probably, conserved regulatory mechanisms of action. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014 2014-01-01T00:00:00Z 2017-12-10T01:30:10Z |
dc.type.driver.fl_str_mv |
doctoral thesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/7080 |
url |
http://hdl.handle.net/10400.1/7080 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817549770103717888 |