Data towards city bike mobility patterns

Detalhes bibliográficos
Autor(a) principal: Andrade, Francisco António Faria
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/24131
Resumo: New technologies applied to transportation services and the shifting to sustainable modes of transportation turned bike-sharing systems more relevant in the urban mobility scenario. This thesis aims to understand the spatiotemporal station and trip activity patterns in Lisbon bike-sharing system in 2018 and understand trip rate changes in Lisbon bike-sharing system in 2019 and 2020 compared to 2018. By analyzing the spatiotemporal distribution of trips through stations and the weather factors combined with the usage rate throughout the years, it is possible to improve and make the system more suitable to the users’ demand. In this research work, we used large open datasets made available by the Lisbon City Hall, that are deployed by using the CRISP-DM. Our major work contribution was the development of a data analytics process for urban data, specifically bike-sharing data, that helps to understand how people move in the city using bikes. Moreover, we aimed to understand how mobility patterns change over time and the impact of pandemic events. Major findings show that most bike-sharing happens on weekdays, with no precipitation and mild temperature. Additionally, there was an exponential increase in the number of trips, cut short by COVID-19 pandemics. The current approach can be applied to any city with digital data available.
id RCAP_c8c1dbc20ff8a9d21eadf700f6619a41
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/24131
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Data towards city bike mobility patternsBike-sharing systemUrban mobility patternsStatistical analysisAnálise de clusters -- Cluster analysisSistemas de bicicletas partilhadasPadrões de mobilidade urbanaAnálise estatísticaNew technologies applied to transportation services and the shifting to sustainable modes of transportation turned bike-sharing systems more relevant in the urban mobility scenario. This thesis aims to understand the spatiotemporal station and trip activity patterns in Lisbon bike-sharing system in 2018 and understand trip rate changes in Lisbon bike-sharing system in 2019 and 2020 compared to 2018. By analyzing the spatiotemporal distribution of trips through stations and the weather factors combined with the usage rate throughout the years, it is possible to improve and make the system more suitable to the users’ demand. In this research work, we used large open datasets made available by the Lisbon City Hall, that are deployed by using the CRISP-DM. Our major work contribution was the development of a data analytics process for urban data, specifically bike-sharing data, that helps to understand how people move in the city using bikes. Moreover, we aimed to understand how mobility patterns change over time and the impact of pandemic events. Major findings show that most bike-sharing happens on weekdays, with no precipitation and mild temperature. Additionally, there was an exponential increase in the number of trips, cut short by COVID-19 pandemics. The current approach can be applied to any city with digital data available.As novas tecnologias aplicadas aos serviços de transporte e a transição para meios de transporte sustentáveis tornaram os sistemas de bicicletas partilhadas mais relevantes no cenário da mobilidade urbana. O objetivo deste estudo é compreender os padrões de mobilidade de espaço e tempo das estações e viagens neste sistema de Lisboa em 2018, e também compreender as mudanças na taxa de viagens nos sistemas de Lisboa em 2019 e 2020 em comparação com 2018. Analisando a distribuição de espaço e tempo das viagens através das estações e, os fatores climáticos juntamente com a taxa de utilização ao longo dos anos, é possível melhorar e tornar o sistema mais adequado à procura dos utilizadores. Usamos um grande conjunto de dados com implementação do CRISP-DM. A principal contribuição do trabalho foi o desenvolvimento de um processo de análise e visualização de dados urbanos, especificamente dados de sistemas de bicicletas partilhadas, que permite assim, a melhor compreensão de como as pessoas se movem na cidade usando bicicletas. Além disso, é importante identificar os padrões de mobilidade que mudam com o tempo e o impacto dos eventos pandémicos. Os resultados mostram que a maior parte do uso de bicicletas partilhadas é efetuado durante a semana, sem precipitação e com temperatura amena. Houve um aumento exponencial no número de viagens, por sua vez interrompido pela pandemia do COVID-19. Esta abordagem pode ser aplicada a qualquer cidade com dados digitais disponíveis.2022-01-17T14:48:28Z2021-11-11T00:00:00Z2021-11-112021-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/24131TID:202838293engAndrade, Francisco António Fariainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:34:03Zoai:repositorio.iscte-iul.pt:10071/24131Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:34:03Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Data towards city bike mobility patterns
title Data towards city bike mobility patterns
spellingShingle Data towards city bike mobility patterns
Andrade, Francisco António Faria
Bike-sharing system
Urban mobility patterns
Statistical analysis
Análise de clusters -- Cluster analysis
Sistemas de bicicletas partilhadas
Padrões de mobilidade urbana
Análise estatística
title_short Data towards city bike mobility patterns
title_full Data towards city bike mobility patterns
title_fullStr Data towards city bike mobility patterns
title_full_unstemmed Data towards city bike mobility patterns
title_sort Data towards city bike mobility patterns
author Andrade, Francisco António Faria
author_facet Andrade, Francisco António Faria
author_role author
dc.contributor.author.fl_str_mv Andrade, Francisco António Faria
dc.subject.por.fl_str_mv Bike-sharing system
Urban mobility patterns
Statistical analysis
Análise de clusters -- Cluster analysis
Sistemas de bicicletas partilhadas
Padrões de mobilidade urbana
Análise estatística
topic Bike-sharing system
Urban mobility patterns
Statistical analysis
Análise de clusters -- Cluster analysis
Sistemas de bicicletas partilhadas
Padrões de mobilidade urbana
Análise estatística
description New technologies applied to transportation services and the shifting to sustainable modes of transportation turned bike-sharing systems more relevant in the urban mobility scenario. This thesis aims to understand the spatiotemporal station and trip activity patterns in Lisbon bike-sharing system in 2018 and understand trip rate changes in Lisbon bike-sharing system in 2019 and 2020 compared to 2018. By analyzing the spatiotemporal distribution of trips through stations and the weather factors combined with the usage rate throughout the years, it is possible to improve and make the system more suitable to the users’ demand. In this research work, we used large open datasets made available by the Lisbon City Hall, that are deployed by using the CRISP-DM. Our major work contribution was the development of a data analytics process for urban data, specifically bike-sharing data, that helps to understand how people move in the city using bikes. Moreover, we aimed to understand how mobility patterns change over time and the impact of pandemic events. Major findings show that most bike-sharing happens on weekdays, with no precipitation and mild temperature. Additionally, there was an exponential increase in the number of trips, cut short by COVID-19 pandemics. The current approach can be applied to any city with digital data available.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-11T00:00:00Z
2021-11-11
2021-10
2022-01-17T14:48:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/24131
TID:202838293
url http://hdl.handle.net/10071/24131
identifier_str_mv TID:202838293
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817546504476295168