Data towards city bike mobility patterns
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/24131 |
Resumo: | New technologies applied to transportation services and the shifting to sustainable modes of transportation turned bike-sharing systems more relevant in the urban mobility scenario. This thesis aims to understand the spatiotemporal station and trip activity patterns in Lisbon bike-sharing system in 2018 and understand trip rate changes in Lisbon bike-sharing system in 2019 and 2020 compared to 2018. By analyzing the spatiotemporal distribution of trips through stations and the weather factors combined with the usage rate throughout the years, it is possible to improve and make the system more suitable to the users’ demand. In this research work, we used large open datasets made available by the Lisbon City Hall, that are deployed by using the CRISP-DM. Our major work contribution was the development of a data analytics process for urban data, specifically bike-sharing data, that helps to understand how people move in the city using bikes. Moreover, we aimed to understand how mobility patterns change over time and the impact of pandemic events. Major findings show that most bike-sharing happens on weekdays, with no precipitation and mild temperature. Additionally, there was an exponential increase in the number of trips, cut short by COVID-19 pandemics. The current approach can be applied to any city with digital data available. |
id |
RCAP_c8c1dbc20ff8a9d21eadf700f6619a41 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/24131 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Data towards city bike mobility patternsBike-sharing systemUrban mobility patternsStatistical analysisAnálise de clusters -- Cluster analysisSistemas de bicicletas partilhadasPadrões de mobilidade urbanaAnálise estatísticaNew technologies applied to transportation services and the shifting to sustainable modes of transportation turned bike-sharing systems more relevant in the urban mobility scenario. This thesis aims to understand the spatiotemporal station and trip activity patterns in Lisbon bike-sharing system in 2018 and understand trip rate changes in Lisbon bike-sharing system in 2019 and 2020 compared to 2018. By analyzing the spatiotemporal distribution of trips through stations and the weather factors combined with the usage rate throughout the years, it is possible to improve and make the system more suitable to the users’ demand. In this research work, we used large open datasets made available by the Lisbon City Hall, that are deployed by using the CRISP-DM. Our major work contribution was the development of a data analytics process for urban data, specifically bike-sharing data, that helps to understand how people move in the city using bikes. Moreover, we aimed to understand how mobility patterns change over time and the impact of pandemic events. Major findings show that most bike-sharing happens on weekdays, with no precipitation and mild temperature. Additionally, there was an exponential increase in the number of trips, cut short by COVID-19 pandemics. The current approach can be applied to any city with digital data available.As novas tecnologias aplicadas aos serviços de transporte e a transição para meios de transporte sustentáveis tornaram os sistemas de bicicletas partilhadas mais relevantes no cenário da mobilidade urbana. O objetivo deste estudo é compreender os padrões de mobilidade de espaço e tempo das estações e viagens neste sistema de Lisboa em 2018, e também compreender as mudanças na taxa de viagens nos sistemas de Lisboa em 2019 e 2020 em comparação com 2018. Analisando a distribuição de espaço e tempo das viagens através das estações e, os fatores climáticos juntamente com a taxa de utilização ao longo dos anos, é possível melhorar e tornar o sistema mais adequado à procura dos utilizadores. Usamos um grande conjunto de dados com implementação do CRISP-DM. A principal contribuição do trabalho foi o desenvolvimento de um processo de análise e visualização de dados urbanos, especificamente dados de sistemas de bicicletas partilhadas, que permite assim, a melhor compreensão de como as pessoas se movem na cidade usando bicicletas. Além disso, é importante identificar os padrões de mobilidade que mudam com o tempo e o impacto dos eventos pandémicos. Os resultados mostram que a maior parte do uso de bicicletas partilhadas é efetuado durante a semana, sem precipitação e com temperatura amena. Houve um aumento exponencial no número de viagens, por sua vez interrompido pela pandemia do COVID-19. Esta abordagem pode ser aplicada a qualquer cidade com dados digitais disponíveis.2022-01-17T14:48:28Z2021-11-11T00:00:00Z2021-11-112021-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/24131TID:202838293engAndrade, Francisco António Fariainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:34:03Zoai:repositorio.iscte-iul.pt:10071/24131Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:34:03Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Data towards city bike mobility patterns |
title |
Data towards city bike mobility patterns |
spellingShingle |
Data towards city bike mobility patterns Andrade, Francisco António Faria Bike-sharing system Urban mobility patterns Statistical analysis Análise de clusters -- Cluster analysis Sistemas de bicicletas partilhadas Padrões de mobilidade urbana Análise estatística |
title_short |
Data towards city bike mobility patterns |
title_full |
Data towards city bike mobility patterns |
title_fullStr |
Data towards city bike mobility patterns |
title_full_unstemmed |
Data towards city bike mobility patterns |
title_sort |
Data towards city bike mobility patterns |
author |
Andrade, Francisco António Faria |
author_facet |
Andrade, Francisco António Faria |
author_role |
author |
dc.contributor.author.fl_str_mv |
Andrade, Francisco António Faria |
dc.subject.por.fl_str_mv |
Bike-sharing system Urban mobility patterns Statistical analysis Análise de clusters -- Cluster analysis Sistemas de bicicletas partilhadas Padrões de mobilidade urbana Análise estatística |
topic |
Bike-sharing system Urban mobility patterns Statistical analysis Análise de clusters -- Cluster analysis Sistemas de bicicletas partilhadas Padrões de mobilidade urbana Análise estatística |
description |
New technologies applied to transportation services and the shifting to sustainable modes of transportation turned bike-sharing systems more relevant in the urban mobility scenario. This thesis aims to understand the spatiotemporal station and trip activity patterns in Lisbon bike-sharing system in 2018 and understand trip rate changes in Lisbon bike-sharing system in 2019 and 2020 compared to 2018. By analyzing the spatiotemporal distribution of trips through stations and the weather factors combined with the usage rate throughout the years, it is possible to improve and make the system more suitable to the users’ demand. In this research work, we used large open datasets made available by the Lisbon City Hall, that are deployed by using the CRISP-DM. Our major work contribution was the development of a data analytics process for urban data, specifically bike-sharing data, that helps to understand how people move in the city using bikes. Moreover, we aimed to understand how mobility patterns change over time and the impact of pandemic events. Major findings show that most bike-sharing happens on weekdays, with no precipitation and mild temperature. Additionally, there was an exponential increase in the number of trips, cut short by COVID-19 pandemics. The current approach can be applied to any city with digital data available. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-11T00:00:00Z 2021-11-11 2021-10 2022-01-17T14:48:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/24131 TID:202838293 |
url |
http://hdl.handle.net/10071/24131 |
identifier_str_mv |
TID:202838293 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546504476295168 |