Robust automated cardiac arrhythmia detection in ECG beat signals

Detalhes bibliográficos
Autor(a) principal: Victor Hugo C. de Albuquerque
Data de Publicação: 2018
Outros Autores: Thiago M. Nunes, Danillo R. Pereira, Eduardo José da S. Luz, David Menotti, João P. Papa, João Manuel R. S. Tavares
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/110566
Resumo: Nowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases.
id RCAP_ca36e81c09b4bbbbde12ac9bd98db411
oai_identifier_str oai:repositorio-aberto.up.pt:10216/110566
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Robust automated cardiac arrhythmia detection in ECG beat signalsCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesNowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases.2018-022018-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfimage/jpeghttps://hdl.handle.net/10216/110566eng0941-064310.1007/s00521-016-2472-8Victor Hugo C. de AlbuquerqueThiago M. NunesDanillo R. PereiraEduardo José da S. LuzDavid MenottiJoão P. PapaJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-27T08:58:11Zoai:repositorio-aberto.up.pt:10216/110566Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-27T08:58:11Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Robust automated cardiac arrhythmia detection in ECG beat signals
title Robust automated cardiac arrhythmia detection in ECG beat signals
spellingShingle Robust automated cardiac arrhythmia detection in ECG beat signals
Victor Hugo C. de Albuquerque
Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
title_short Robust automated cardiac arrhythmia detection in ECG beat signals
title_full Robust automated cardiac arrhythmia detection in ECG beat signals
title_fullStr Robust automated cardiac arrhythmia detection in ECG beat signals
title_full_unstemmed Robust automated cardiac arrhythmia detection in ECG beat signals
title_sort Robust automated cardiac arrhythmia detection in ECG beat signals
author Victor Hugo C. de Albuquerque
author_facet Victor Hugo C. de Albuquerque
Thiago M. Nunes
Danillo R. Pereira
Eduardo José da S. Luz
David Menotti
João P. Papa
João Manuel R. S. Tavares
author_role author
author2 Thiago M. Nunes
Danillo R. Pereira
Eduardo José da S. Luz
David Menotti
João P. Papa
João Manuel R. S. Tavares
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Victor Hugo C. de Albuquerque
Thiago M. Nunes
Danillo R. Pereira
Eduardo José da S. Luz
David Menotti
João P. Papa
João Manuel R. S. Tavares
dc.subject.por.fl_str_mv Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
topic Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
description Nowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases.
publishDate 2018
dc.date.none.fl_str_mv 2018-02
2018-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/110566
url https://hdl.handle.net/10216/110566
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0941-0643
10.1007/s00521-016-2472-8
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
image/jpeg
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817548101777358848