Robust automated cardiac arrhythmia detection in ECG beat signals
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/110566 |
Resumo: | Nowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases. |
id |
RCAP_ca36e81c09b4bbbbde12ac9bd98db411 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/110566 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Robust automated cardiac arrhythmia detection in ECG beat signalsCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesNowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases.2018-022018-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfimage/jpeghttps://hdl.handle.net/10216/110566eng0941-064310.1007/s00521-016-2472-8Victor Hugo C. de AlbuquerqueThiago M. NunesDanillo R. PereiraEduardo José da S. LuzDavid MenottiJoão P. PapaJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-27T08:58:11Zoai:repositorio-aberto.up.pt:10216/110566Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-27T08:58:11Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Robust automated cardiac arrhythmia detection in ECG beat signals |
title |
Robust automated cardiac arrhythmia detection in ECG beat signals |
spellingShingle |
Robust automated cardiac arrhythmia detection in ECG beat signals Victor Hugo C. de Albuquerque Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
title_short |
Robust automated cardiac arrhythmia detection in ECG beat signals |
title_full |
Robust automated cardiac arrhythmia detection in ECG beat signals |
title_fullStr |
Robust automated cardiac arrhythmia detection in ECG beat signals |
title_full_unstemmed |
Robust automated cardiac arrhythmia detection in ECG beat signals |
title_sort |
Robust automated cardiac arrhythmia detection in ECG beat signals |
author |
Victor Hugo C. de Albuquerque |
author_facet |
Victor Hugo C. de Albuquerque Thiago M. Nunes Danillo R. Pereira Eduardo José da S. Luz David Menotti João P. Papa João Manuel R. S. Tavares |
author_role |
author |
author2 |
Thiago M. Nunes Danillo R. Pereira Eduardo José da S. Luz David Menotti João P. Papa João Manuel R. S. Tavares |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Victor Hugo C. de Albuquerque Thiago M. Nunes Danillo R. Pereira Eduardo José da S. Luz David Menotti João P. Papa João Manuel R. S. Tavares |
dc.subject.por.fl_str_mv |
Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
topic |
Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
description |
Nowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02 2018-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/110566 |
url |
https://hdl.handle.net/10216/110566 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0941-0643 10.1007/s00521-016-2472-8 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf image/jpeg |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817548101777358848 |