A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy

Detalhes bibliográficos
Autor(a) principal: Lakshtanov, Evgeny L.
Data de Publicação: 2016
Outros Autores: Novikov, Roman G., Vainberg, Boris R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/16608
Resumo: We develop the Riemann-Hilbert problem approach to in- verse scattering for the two-dimensional Schr odinger equation at xed energy. We obtain global or generic versions of the key results of this approach for the case of positive energy and compactly supported poten- tials. In particular, we do not assume that the potential is small or that Faddeev scattering solutions do not have singularities (i.e. we allow the Faddeev exceptional points to exist). Applications of these results to the Novikov-Veselov equation are also considered.
id RCAP_cacb18e8648201027c7a744fc3cea25b
oai_identifier_str oai:ria.ua.pt:10773/16608
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energyTwo-dimensional inverse scatteringFaddeev functionsGeneralized Riemann-Hilbert-Manakov problemNovikov-Veselov equationWe develop the Riemann-Hilbert problem approach to in- verse scattering for the two-dimensional Schr odinger equation at xed energy. We obtain global or generic versions of the key results of this approach for the case of positive energy and compactly supported poten- tials. In particular, we do not assume that the potential is small or that Faddeev scattering solutions do not have singularities (i.e. we allow the Faddeev exceptional points to exist). Applications of these results to the Novikov-Veselov equation are also considered.Università di Trieste2017-01-09T15:06:31Z2016-12-01T00:00:00Z2016-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/16608eng0049-4704Lakshtanov, Evgeny L.Novikov, Roman G.Vainberg, Boris R.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:30:59Zoai:ria.ua.pt:10773/16608Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:51:41.751027Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy
title A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy
spellingShingle A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy
Lakshtanov, Evgeny L.
Two-dimensional inverse scattering
Faddeev functions
Generalized Riemann-Hilbert-Manakov problem
Novikov-Veselov equation
title_short A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy
title_full A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy
title_fullStr A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy
title_full_unstemmed A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy
title_sort A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy
author Lakshtanov, Evgeny L.
author_facet Lakshtanov, Evgeny L.
Novikov, Roman G.
Vainberg, Boris R.
author_role author
author2 Novikov, Roman G.
Vainberg, Boris R.
author2_role author
author
dc.contributor.author.fl_str_mv Lakshtanov, Evgeny L.
Novikov, Roman G.
Vainberg, Boris R.
dc.subject.por.fl_str_mv Two-dimensional inverse scattering
Faddeev functions
Generalized Riemann-Hilbert-Manakov problem
Novikov-Veselov equation
topic Two-dimensional inverse scattering
Faddeev functions
Generalized Riemann-Hilbert-Manakov problem
Novikov-Veselov equation
description We develop the Riemann-Hilbert problem approach to in- verse scattering for the two-dimensional Schr odinger equation at xed energy. We obtain global or generic versions of the key results of this approach for the case of positive energy and compactly supported poten- tials. In particular, we do not assume that the potential is small or that Faddeev scattering solutions do not have singularities (i.e. we allow the Faddeev exceptional points to exist). Applications of these results to the Novikov-Veselov equation are also considered.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-01T00:00:00Z
2016-12
2017-01-09T15:06:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/16608
url http://hdl.handle.net/10773/16608
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0049-4704
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Università di Trieste
publisher.none.fl_str_mv Università di Trieste
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137566743592960