A convergence result in the study of bone remodeling contact problems

Detalhes bibliográficos
Autor(a) principal: Fernández, J. R.
Data de Publicação: 2008
Outros Autores: Figueiredo, I. N., Martínez, R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/4580
https://doi.org/10.1016/j.jmaa.2008.01.084
Resumo: We consider the approximation of a bone remodeling model with the Signorini contact conditions by a contact problem with normal compliant obstacle, when the obstacle's deformability coefficient converges to zero (that is, the obstacle's stiffness tends to infinity). The variational problem is a coupled system composed of a nonlinear variational equation (in the case of normal compliance contact conditions) or a variational inequality (for the case of Signorini's contact conditions), for the mechanical displacement field, and a first-order ordinary differential equation for the bone remodeling function. A theoretical result, which states the convergence of the contact problem with normal compliance contact law to the Signorini problem, is then proved. Finally, some numerical simulations, involving examples in one and two dimensions, are reported to show this convergence behaviour.
id RCAP_cb60f037f3e1f39028439dff8beb9d38
oai_identifier_str oai:estudogeral.uc.pt:10316/4580
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A convergence result in the study of bone remodeling contact problemsBone remodelingSignorini conditionsNormal complianceWeak solutionsConvergenceNumerical simulationsWe consider the approximation of a bone remodeling model with the Signorini contact conditions by a contact problem with normal compliant obstacle, when the obstacle's deformability coefficient converges to zero (that is, the obstacle's stiffness tends to infinity). The variational problem is a coupled system composed of a nonlinear variational equation (in the case of normal compliance contact conditions) or a variational inequality (for the case of Signorini's contact conditions), for the mechanical displacement field, and a first-order ordinary differential equation for the bone remodeling function. A theoretical result, which states the convergence of the contact problem with normal compliance contact law to the Signorini problem, is then proved. Finally, some numerical simulations, involving examples in one and two dimensions, are reported to show this convergence behaviour.http://www.sciencedirect.com/science/article/B6WK2-4RR900J-1/1/0ce05c677b442a8b380f20bf7790ec222008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4580http://hdl.handle.net/10316/4580https://doi.org/10.1016/j.jmaa.2008.01.084engJournal of Mathematical Analysis and Applications. 343:2 (2008) 951-964Fernández, J. R.Figueiredo, I. N.Martínez, R.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:49:11Zoai:estudogeral.uc.pt:10316/4580Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:45.703539Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A convergence result in the study of bone remodeling contact problems
title A convergence result in the study of bone remodeling contact problems
spellingShingle A convergence result in the study of bone remodeling contact problems
Fernández, J. R.
Bone remodeling
Signorini conditions
Normal compliance
Weak solutions
Convergence
Numerical simulations
title_short A convergence result in the study of bone remodeling contact problems
title_full A convergence result in the study of bone remodeling contact problems
title_fullStr A convergence result in the study of bone remodeling contact problems
title_full_unstemmed A convergence result in the study of bone remodeling contact problems
title_sort A convergence result in the study of bone remodeling contact problems
author Fernández, J. R.
author_facet Fernández, J. R.
Figueiredo, I. N.
Martínez, R.
author_role author
author2 Figueiredo, I. N.
Martínez, R.
author2_role author
author
dc.contributor.author.fl_str_mv Fernández, J. R.
Figueiredo, I. N.
Martínez, R.
dc.subject.por.fl_str_mv Bone remodeling
Signorini conditions
Normal compliance
Weak solutions
Convergence
Numerical simulations
topic Bone remodeling
Signorini conditions
Normal compliance
Weak solutions
Convergence
Numerical simulations
description We consider the approximation of a bone remodeling model with the Signorini contact conditions by a contact problem with normal compliant obstacle, when the obstacle's deformability coefficient converges to zero (that is, the obstacle's stiffness tends to infinity). The variational problem is a coupled system composed of a nonlinear variational equation (in the case of normal compliance contact conditions) or a variational inequality (for the case of Signorini's contact conditions), for the mechanical displacement field, and a first-order ordinary differential equation for the bone remodeling function. A theoretical result, which states the convergence of the contact problem with normal compliance contact law to the Signorini problem, is then proved. Finally, some numerical simulations, involving examples in one and two dimensions, are reported to show this convergence behaviour.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/4580
http://hdl.handle.net/10316/4580
https://doi.org/10.1016/j.jmaa.2008.01.084
url http://hdl.handle.net/10316/4580
https://doi.org/10.1016/j.jmaa.2008.01.084
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Mathematical Analysis and Applications. 343:2 (2008) 951-964
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1817552169387163648