A convergence result in the study of bone remodeling contact problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/4580 https://doi.org/10.1016/j.jmaa.2008.01.084 |
Resumo: | We consider the approximation of a bone remodeling model with the Signorini contact conditions by a contact problem with normal compliant obstacle, when the obstacle's deformability coefficient converges to zero (that is, the obstacle's stiffness tends to infinity). The variational problem is a coupled system composed of a nonlinear variational equation (in the case of normal compliance contact conditions) or a variational inequality (for the case of Signorini's contact conditions), for the mechanical displacement field, and a first-order ordinary differential equation for the bone remodeling function. A theoretical result, which states the convergence of the contact problem with normal compliance contact law to the Signorini problem, is then proved. Finally, some numerical simulations, involving examples in one and two dimensions, are reported to show this convergence behaviour. |
id |
RCAP_cb60f037f3e1f39028439dff8beb9d38 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/4580 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A convergence result in the study of bone remodeling contact problemsBone remodelingSignorini conditionsNormal complianceWeak solutionsConvergenceNumerical simulationsWe consider the approximation of a bone remodeling model with the Signorini contact conditions by a contact problem with normal compliant obstacle, when the obstacle's deformability coefficient converges to zero (that is, the obstacle's stiffness tends to infinity). The variational problem is a coupled system composed of a nonlinear variational equation (in the case of normal compliance contact conditions) or a variational inequality (for the case of Signorini's contact conditions), for the mechanical displacement field, and a first-order ordinary differential equation for the bone remodeling function. A theoretical result, which states the convergence of the contact problem with normal compliance contact law to the Signorini problem, is then proved. Finally, some numerical simulations, involving examples in one and two dimensions, are reported to show this convergence behaviour.http://www.sciencedirect.com/science/article/B6WK2-4RR900J-1/1/0ce05c677b442a8b380f20bf7790ec222008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4580http://hdl.handle.net/10316/4580https://doi.org/10.1016/j.jmaa.2008.01.084engJournal of Mathematical Analysis and Applications. 343:2 (2008) 951-964Fernández, J. R.Figueiredo, I. N.Martínez, R.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:49:11Zoai:estudogeral.uc.pt:10316/4580Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:45.703539Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A convergence result in the study of bone remodeling contact problems |
title |
A convergence result in the study of bone remodeling contact problems |
spellingShingle |
A convergence result in the study of bone remodeling contact problems Fernández, J. R. Bone remodeling Signorini conditions Normal compliance Weak solutions Convergence Numerical simulations |
title_short |
A convergence result in the study of bone remodeling contact problems |
title_full |
A convergence result in the study of bone remodeling contact problems |
title_fullStr |
A convergence result in the study of bone remodeling contact problems |
title_full_unstemmed |
A convergence result in the study of bone remodeling contact problems |
title_sort |
A convergence result in the study of bone remodeling contact problems |
author |
Fernández, J. R. |
author_facet |
Fernández, J. R. Figueiredo, I. N. Martínez, R. |
author_role |
author |
author2 |
Figueiredo, I. N. Martínez, R. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Fernández, J. R. Figueiredo, I. N. Martínez, R. |
dc.subject.por.fl_str_mv |
Bone remodeling Signorini conditions Normal compliance Weak solutions Convergence Numerical simulations |
topic |
Bone remodeling Signorini conditions Normal compliance Weak solutions Convergence Numerical simulations |
description |
We consider the approximation of a bone remodeling model with the Signorini contact conditions by a contact problem with normal compliant obstacle, when the obstacle's deformability coefficient converges to zero (that is, the obstacle's stiffness tends to infinity). The variational problem is a coupled system composed of a nonlinear variational equation (in the case of normal compliance contact conditions) or a variational inequality (for the case of Signorini's contact conditions), for the mechanical displacement field, and a first-order ordinary differential equation for the bone remodeling function. A theoretical result, which states the convergence of the contact problem with normal compliance contact law to the Signorini problem, is then proved. Finally, some numerical simulations, involving examples in one and two dimensions, are reported to show this convergence behaviour. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/4580 http://hdl.handle.net/10316/4580 https://doi.org/10.1016/j.jmaa.2008.01.084 |
url |
http://hdl.handle.net/10316/4580 https://doi.org/10.1016/j.jmaa.2008.01.084 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Mathematical Analysis and Applications. 343:2 (2008) 951-964 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817552169387163648 |