Interpretable success prediction in higher education institutions using pedagogical surveys

Detalhes bibliográficos
Autor(a) principal: Leal, Fátima
Data de Publicação: 2022
Outros Autores: Veloso, Bruno, Santos-Pereira, Carla, Moreira, Fernando, Durão, Natércia, Jesus-Silva, Natacha
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/11328/4507
https://doi.org/10.3390/su142013446
Resumo: The indicators of student success at higher education institutions are continuously analysed to increase the students’ enrolment in multiple scientific areas. Every semester, the students respond to a pedagogical survey that aims to collect the student opinion of curricular units in terms of content and teaching methodologies. Using this information, we intend to anticipate the success in higher- level courses and prevent dropouts. Specifically, this paper contributes with an interpretable student classification method. The proposed solution relies on (i) a pedagogical survey to collect student’s opinions; (ii) a statistical data analysis to validate the reliability of the survey; and (iii) machine learning algorithms to classify the success of a student. In addition, the proposed method includes an explainable mechanism to interpret the classifications and their main factors. This transparent pipeline was designed to have implications in both digital and sustainable education, impacting the three pillars of sustainability, i.e.,economic, social, and environmental, where transparency is a cornerstone. The work was assessed with a dataset from a Portuguese higher-level institution, contemplating multiple courses from different departments. The most promising results were achieved with Random Forest presenting 98% in accuracy and F-measure.
id RCAP_ccb372b5236b8927729a3f3eafb7a823
oai_identifier_str oai:repositorio.upt.pt:11328/4507
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Interpretable success prediction in higher education institutions using pedagogical surveysClassificationStudent successInterpretabilityData analysisHigher education institutionsSustainable educationThe indicators of student success at higher education institutions are continuously analysed to increase the students’ enrolment in multiple scientific areas. Every semester, the students respond to a pedagogical survey that aims to collect the student opinion of curricular units in terms of content and teaching methodologies. Using this information, we intend to anticipate the success in higher- level courses and prevent dropouts. Specifically, this paper contributes with an interpretable student classification method. The proposed solution relies on (i) a pedagogical survey to collect student’s opinions; (ii) a statistical data analysis to validate the reliability of the survey; and (iii) machine learning algorithms to classify the success of a student. In addition, the proposed method includes an explainable mechanism to interpret the classifications and their main factors. This transparent pipeline was designed to have implications in both digital and sustainable education, impacting the three pillars of sustainability, i.e.,economic, social, and environmental, where transparency is a cornerstone. The work was assessed with a dataset from a Portuguese higher-level institution, contemplating multiple courses from different departments. The most promising results were achieved with Random Forest presenting 98% in accuracy and F-measure.MDPI - Multidisciplinary Digital Publishing Institute2022-10-20T10:34:23Z2022-10-202022-10-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfLeal, F., Veloso, B., Santos-Pereira, C., Moreira, F., Durão, N., Jesus-Silva, N. (2022). Interpretable success prediction in higher education institutions using pedagogical surveys. Sustainability, 14, 13446, 1-18. https://doi.org/10.3390/su142013446. Repositório Institucional UPT. http://hdl.handle.net/11328/4507http://hdl.handle.net/11328/4507Leal, F., Veloso, B., Santos-Pereira, C., Moreira, F., Durão, N., Jesus-Silva, N. (2022). Interpretable success prediction in higher education institutions using pedagogical surveys. Sustainability, 14, 13446, 1-18. https://doi.org/10.3390/su142013446. Repositório Institucional UPT. http://hdl.handle.net/11328/4507http://hdl.handle.net/11328/4507https://doi.org/10.3390/su142013446eng2071-1050http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessLeal, FátimaVeloso, BrunoSantos-Pereira, CarlaMoreira, FernandoDurão, NatérciaJesus-Silva, Natachareponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T02:08:45Zoai:repositorio.upt.pt:11328/4507Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:40:12.024440Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Interpretable success prediction in higher education institutions using pedagogical surveys
title Interpretable success prediction in higher education institutions using pedagogical surveys
spellingShingle Interpretable success prediction in higher education institutions using pedagogical surveys
Leal, Fátima
Classification
Student success
Interpretability
Data analysis
Higher education institutions
Sustainable education
title_short Interpretable success prediction in higher education institutions using pedagogical surveys
title_full Interpretable success prediction in higher education institutions using pedagogical surveys
title_fullStr Interpretable success prediction in higher education institutions using pedagogical surveys
title_full_unstemmed Interpretable success prediction in higher education institutions using pedagogical surveys
title_sort Interpretable success prediction in higher education institutions using pedagogical surveys
author Leal, Fátima
author_facet Leal, Fátima
Veloso, Bruno
Santos-Pereira, Carla
Moreira, Fernando
Durão, Natércia
Jesus-Silva, Natacha
author_role author
author2 Veloso, Bruno
Santos-Pereira, Carla
Moreira, Fernando
Durão, Natércia
Jesus-Silva, Natacha
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Leal, Fátima
Veloso, Bruno
Santos-Pereira, Carla
Moreira, Fernando
Durão, Natércia
Jesus-Silva, Natacha
dc.subject.por.fl_str_mv Classification
Student success
Interpretability
Data analysis
Higher education institutions
Sustainable education
topic Classification
Student success
Interpretability
Data analysis
Higher education institutions
Sustainable education
description The indicators of student success at higher education institutions are continuously analysed to increase the students’ enrolment in multiple scientific areas. Every semester, the students respond to a pedagogical survey that aims to collect the student opinion of curricular units in terms of content and teaching methodologies. Using this information, we intend to anticipate the success in higher- level courses and prevent dropouts. Specifically, this paper contributes with an interpretable student classification method. The proposed solution relies on (i) a pedagogical survey to collect student’s opinions; (ii) a statistical data analysis to validate the reliability of the survey; and (iii) machine learning algorithms to classify the success of a student. In addition, the proposed method includes an explainable mechanism to interpret the classifications and their main factors. This transparent pipeline was designed to have implications in both digital and sustainable education, impacting the three pillars of sustainability, i.e.,economic, social, and environmental, where transparency is a cornerstone. The work was assessed with a dataset from a Portuguese higher-level institution, contemplating multiple courses from different departments. The most promising results were achieved with Random Forest presenting 98% in accuracy and F-measure.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-20T10:34:23Z
2022-10-20
2022-10-18T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Leal, F., Veloso, B., Santos-Pereira, C., Moreira, F., Durão, N., Jesus-Silva, N. (2022). Interpretable success prediction in higher education institutions using pedagogical surveys. Sustainability, 14, 13446, 1-18. https://doi.org/10.3390/su142013446. Repositório Institucional UPT. http://hdl.handle.net/11328/4507
http://hdl.handle.net/11328/4507
Leal, F., Veloso, B., Santos-Pereira, C., Moreira, F., Durão, N., Jesus-Silva, N. (2022). Interpretable success prediction in higher education institutions using pedagogical surveys. Sustainability, 14, 13446, 1-18. https://doi.org/10.3390/su142013446. Repositório Institucional UPT. http://hdl.handle.net/11328/4507
http://hdl.handle.net/11328/4507
https://doi.org/10.3390/su142013446
identifier_str_mv Leal, F., Veloso, B., Santos-Pereira, C., Moreira, F., Durão, N., Jesus-Silva, N. (2022). Interpretable success prediction in higher education institutions using pedagogical surveys. Sustainability, 14, 13446, 1-18. https://doi.org/10.3390/su142013446. Repositório Institucional UPT. http://hdl.handle.net/11328/4507
url http://hdl.handle.net/11328/4507
https://doi.org/10.3390/su142013446
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2071-1050
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI - Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv MDPI - Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134963373703168