Development of a Non-Invasive Brain-Computer Interface for Neurorehabilitation

Detalhes bibliográficos
Autor(a) principal: Pinto, Rui Dinis Ribeiro da Silva
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/28549
Resumo: Neurological disorders, in particular Stroke, have an impact on many individuals worldwide. These individuals are often left with residual motor control in their upper limbs. Although conventional therapy can aid in recovery, it is not always accessible, and the procedures are dull for the patient. Novel methods of therapy are being developed, including Brain-Computer Interfaces (BCIs). Although BCI research has been flourishing in the past few years, most rehabilitation applications are not yet suitable for clinical practice.This is due to the fact that BCI reliability and validation has not yet been achieved, and few clinical trials have been done with BCIs. Another crucial factor, is that modern BCIs are often comprised of inconvenient hardware and software. This is a major factor of aversion from both patients and clinicians. This Master Dissertation introduces the EmotivBCI: an easy to use platform for Electroencephalogram acquisition, processing and classification of sensorimotor rhythms with respect to motor action and motor imagery. The acquisition of EEG is done through 8 channels of the Emotiv Epoc wireless headset. Signals are pre-processed, and the 2 best combinations of channel/frequency pairs that exhibit the greatest spectral variation between the rest and action conditions are extracted for different time frames. These features are then used to build a feature matrix with 2 sets of attributes and 2 class labels. Finally the resulting feature matrix is used to train 3 different classifiers, in which the best is selected. The EmotivBCI enables users to keep record of their performances, and provides additional features to further examine training sessions. To assess the performance of the EmotivBCI, two studies were conducted with healthy individuals. The first study compares classification accuracies between two different training paradigms. The second study evaluates the progress in performance of a group of individuals after several training sessions.
id RCAP_ccba9722b1a9392e4902b56cc328908e
oai_identifier_str oai:run.unl.pt:10362/28549
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development of a Non-Invasive Brain-Computer Interface for NeurorehabilitationBrain-Computer InterfaceEmotivNeurorehabilitationSignal ProcessingFeature Extraction and ClassificationStrokeDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasNeurological disorders, in particular Stroke, have an impact on many individuals worldwide. These individuals are often left with residual motor control in their upper limbs. Although conventional therapy can aid in recovery, it is not always accessible, and the procedures are dull for the patient. Novel methods of therapy are being developed, including Brain-Computer Interfaces (BCIs). Although BCI research has been flourishing in the past few years, most rehabilitation applications are not yet suitable for clinical practice.This is due to the fact that BCI reliability and validation has not yet been achieved, and few clinical trials have been done with BCIs. Another crucial factor, is that modern BCIs are often comprised of inconvenient hardware and software. This is a major factor of aversion from both patients and clinicians. This Master Dissertation introduces the EmotivBCI: an easy to use platform for Electroencephalogram acquisition, processing and classification of sensorimotor rhythms with respect to motor action and motor imagery. The acquisition of EEG is done through 8 channels of the Emotiv Epoc wireless headset. Signals are pre-processed, and the 2 best combinations of channel/frequency pairs that exhibit the greatest spectral variation between the rest and action conditions are extracted for different time frames. These features are then used to build a feature matrix with 2 sets of attributes and 2 class labels. Finally the resulting feature matrix is used to train 3 different classifiers, in which the best is selected. The EmotivBCI enables users to keep record of their performances, and provides additional features to further examine training sessions. To assess the performance of the EmotivBCI, two studies were conducted with healthy individuals. The first study compares classification accuracies between two different training paradigms. The second study evaluates the progress in performance of a group of individuals after several training sessions.Ferreira, HugoRUNPinto, Rui Dinis Ribeiro da Silva2018-01-19T15:53:51Z2015-1220152015-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/28549enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:15:22Zoai:run.unl.pt:10362/28549Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:28:59.903737Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development of a Non-Invasive Brain-Computer Interface for Neurorehabilitation
title Development of a Non-Invasive Brain-Computer Interface for Neurorehabilitation
spellingShingle Development of a Non-Invasive Brain-Computer Interface for Neurorehabilitation
Pinto, Rui Dinis Ribeiro da Silva
Brain-Computer Interface
Emotiv
Neurorehabilitation
Signal Processing
Feature Extraction and Classification
Stroke
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Development of a Non-Invasive Brain-Computer Interface for Neurorehabilitation
title_full Development of a Non-Invasive Brain-Computer Interface for Neurorehabilitation
title_fullStr Development of a Non-Invasive Brain-Computer Interface for Neurorehabilitation
title_full_unstemmed Development of a Non-Invasive Brain-Computer Interface for Neurorehabilitation
title_sort Development of a Non-Invasive Brain-Computer Interface for Neurorehabilitation
author Pinto, Rui Dinis Ribeiro da Silva
author_facet Pinto, Rui Dinis Ribeiro da Silva
author_role author
dc.contributor.none.fl_str_mv Ferreira, Hugo
RUN
dc.contributor.author.fl_str_mv Pinto, Rui Dinis Ribeiro da Silva
dc.subject.por.fl_str_mv Brain-Computer Interface
Emotiv
Neurorehabilitation
Signal Processing
Feature Extraction and Classification
Stroke
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Brain-Computer Interface
Emotiv
Neurorehabilitation
Signal Processing
Feature Extraction and Classification
Stroke
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description Neurological disorders, in particular Stroke, have an impact on many individuals worldwide. These individuals are often left with residual motor control in their upper limbs. Although conventional therapy can aid in recovery, it is not always accessible, and the procedures are dull for the patient. Novel methods of therapy are being developed, including Brain-Computer Interfaces (BCIs). Although BCI research has been flourishing in the past few years, most rehabilitation applications are not yet suitable for clinical practice.This is due to the fact that BCI reliability and validation has not yet been achieved, and few clinical trials have been done with BCIs. Another crucial factor, is that modern BCIs are often comprised of inconvenient hardware and software. This is a major factor of aversion from both patients and clinicians. This Master Dissertation introduces the EmotivBCI: an easy to use platform for Electroencephalogram acquisition, processing and classification of sensorimotor rhythms with respect to motor action and motor imagery. The acquisition of EEG is done through 8 channels of the Emotiv Epoc wireless headset. Signals are pre-processed, and the 2 best combinations of channel/frequency pairs that exhibit the greatest spectral variation between the rest and action conditions are extracted for different time frames. These features are then used to build a feature matrix with 2 sets of attributes and 2 class labels. Finally the resulting feature matrix is used to train 3 different classifiers, in which the best is selected. The EmotivBCI enables users to keep record of their performances, and provides additional features to further examine training sessions. To assess the performance of the EmotivBCI, two studies were conducted with healthy individuals. The first study compares classification accuracies between two different training paradigms. The second study evaluates the progress in performance of a group of individuals after several training sessions.
publishDate 2015
dc.date.none.fl_str_mv 2015-12
2015
2015-12-01T00:00:00Z
2018-01-19T15:53:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/28549
url http://hdl.handle.net/10362/28549
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137915361558528