Towards adaptive and transparent tourism recommendations: A survey
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/24402 |
Resumo: | Crowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities. |
id |
RCAP_cd4371f42b4212e5cbbd43737bd6bd9c |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/24402 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Towards adaptive and transparent tourism recommendations: A surveyAutoMLcrowdsourced datadata stream miningrecommendationtourismtransparencyCrowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities.WileyRepositório Científico do Instituto Politécnico do PortoLeal, FátimaVeloso, BrunoMalheiro, BeneditaBurguillo, Juan C.2024-01-05T12:51:29Z2023-07-182023-07-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/24402engLeal, F., Veloso, B., Malheiro, B., & Burguillo, J. C. (2023). Towards adaptive and transparent tourism recommendations: A survey. Expert Systems, e13400. https://doi.org/10.1111/exsy.134000266-472010.1111/exsy.13400metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-10T01:49:52Zoai:recipp.ipp.pt:10400.22/24402Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:31:08.474318Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Towards adaptive and transparent tourism recommendations: A survey |
title |
Towards adaptive and transparent tourism recommendations: A survey |
spellingShingle |
Towards adaptive and transparent tourism recommendations: A survey Leal, Fátima AutoML crowdsourced data data stream mining recommendation tourism transparency |
title_short |
Towards adaptive and transparent tourism recommendations: A survey |
title_full |
Towards adaptive and transparent tourism recommendations: A survey |
title_fullStr |
Towards adaptive and transparent tourism recommendations: A survey |
title_full_unstemmed |
Towards adaptive and transparent tourism recommendations: A survey |
title_sort |
Towards adaptive and transparent tourism recommendations: A survey |
author |
Leal, Fátima |
author_facet |
Leal, Fátima Veloso, Bruno Malheiro, Benedita Burguillo, Juan C. |
author_role |
author |
author2 |
Veloso, Bruno Malheiro, Benedita Burguillo, Juan C. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Leal, Fátima Veloso, Bruno Malheiro, Benedita Burguillo, Juan C. |
dc.subject.por.fl_str_mv |
AutoML crowdsourced data data stream mining recommendation tourism transparency |
topic |
AutoML crowdsourced data data stream mining recommendation tourism transparency |
description |
Crowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-18 2023-07-18T00:00:00Z 2024-01-05T12:51:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/24402 |
url |
http://hdl.handle.net/10400.22/24402 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Leal, F., Veloso, B., Malheiro, B., & Burguillo, J. C. (2023). Towards adaptive and transparent tourism recommendations: A survey. Expert Systems, e13400. https://doi.org/10.1111/exsy.13400 0266-4720 10.1111/exsy.13400 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136793085345792 |