Towards adaptive and transparent tourism recommendations: A survey

Detalhes bibliográficos
Autor(a) principal: Leal, Fátima
Data de Publicação: 2023
Outros Autores: Veloso, Bruno, Malheiro, Benedita, Burguillo, Juan C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/24402
Resumo: Crowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities.
id RCAP_cd4371f42b4212e5cbbd43737bd6bd9c
oai_identifier_str oai:recipp.ipp.pt:10400.22/24402
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Towards adaptive and transparent tourism recommendations: A surveyAutoMLcrowdsourced datadata stream miningrecommendationtourismtransparencyCrowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities.WileyRepositório Científico do Instituto Politécnico do PortoLeal, FátimaVeloso, BrunoMalheiro, BeneditaBurguillo, Juan C.2024-01-05T12:51:29Z2023-07-182023-07-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/24402engLeal, F., Veloso, B., Malheiro, B., & Burguillo, J. C. (2023). Towards adaptive and transparent tourism recommendations: A survey. Expert Systems, e13400. https://doi.org/10.1111/exsy.134000266-472010.1111/exsy.13400metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-10T01:49:52Zoai:recipp.ipp.pt:10400.22/24402Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:31:08.474318Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Towards adaptive and transparent tourism recommendations: A survey
title Towards adaptive and transparent tourism recommendations: A survey
spellingShingle Towards adaptive and transparent tourism recommendations: A survey
Leal, Fátima
AutoML
crowdsourced data
data stream mining
recommendation
tourism
transparency
title_short Towards adaptive and transparent tourism recommendations: A survey
title_full Towards adaptive and transparent tourism recommendations: A survey
title_fullStr Towards adaptive and transparent tourism recommendations: A survey
title_full_unstemmed Towards adaptive and transparent tourism recommendations: A survey
title_sort Towards adaptive and transparent tourism recommendations: A survey
author Leal, Fátima
author_facet Leal, Fátima
Veloso, Bruno
Malheiro, Benedita
Burguillo, Juan C.
author_role author
author2 Veloso, Bruno
Malheiro, Benedita
Burguillo, Juan C.
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Leal, Fátima
Veloso, Bruno
Malheiro, Benedita
Burguillo, Juan C.
dc.subject.por.fl_str_mv AutoML
crowdsourced data
data stream mining
recommendation
tourism
transparency
topic AutoML
crowdsourced data
data stream mining
recommendation
tourism
transparency
description Crowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-18
2023-07-18T00:00:00Z
2024-01-05T12:51:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/24402
url http://hdl.handle.net/10400.22/24402
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Leal, F., Veloso, B., Malheiro, B., & Burguillo, J. C. (2023). Towards adaptive and transparent tourism recommendations: A survey. Expert Systems, e13400. https://doi.org/10.1111/exsy.13400
0266-4720
10.1111/exsy.13400
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136793085345792