On the Lyapunov and Stein Equations, II
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/8432 |
Resumo: | Let L ∈ Cn × n and let H, K ∈ Cn × n be Hermitian matrices. Some already known results, including the general inertia theorem, give partial answers to the following problem: find a complete set of relations between the similarity class of L and the congruence classes of H and K, when the Lyapunov equation LH + HL* = K is satisfied. In this paper, we solve this problem when L is nonderogatory, H is nonsingular and K has at least one eigenvalue with positive real part and one eigenvalue with negative real part. Our result generalizes a previous paper by L. M. DeAlba. The corresponding problem with the Stein equation follows easily using a Cayley transform. © 2007 Elsevier Inc. All rights reserved. |
id |
RCAP_f125393af4f617f10880f854fa19006b |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/8432 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the Lyapunov and Stein Equations, IIInertia of matricesLyapunov equationStein equationLet L ∈ Cn × n and let H, K ∈ Cn × n be Hermitian matrices. Some already known results, including the general inertia theorem, give partial answers to the following problem: find a complete set of relations between the similarity class of L and the congruence classes of H and K, when the Lyapunov equation LH + HL* = K is satisfied. In this paper, we solve this problem when L is nonderogatory, H is nonsingular and K has at least one eigenvalue with positive real part and one eigenvalue with negative real part. Our result generalizes a previous paper by L. M. DeAlba. The corresponding problem with the Stein equation follows easily using a Cayley transform. © 2007 Elsevier Inc. All rights reserved.Elsevier2012-05-02T15:43:43Z2007-01-01T00:00:00Z2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/8432eng0024-379510.1016/j.laa.2007.05.001Silva, F.C.Simões, R.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:07:01Zoai:ria.ua.pt:10773/8432Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:43:06.081865Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the Lyapunov and Stein Equations, II |
title |
On the Lyapunov and Stein Equations, II |
spellingShingle |
On the Lyapunov and Stein Equations, II Silva, F.C. Inertia of matrices Lyapunov equation Stein equation |
title_short |
On the Lyapunov and Stein Equations, II |
title_full |
On the Lyapunov and Stein Equations, II |
title_fullStr |
On the Lyapunov and Stein Equations, II |
title_full_unstemmed |
On the Lyapunov and Stein Equations, II |
title_sort |
On the Lyapunov and Stein Equations, II |
author |
Silva, F.C. |
author_facet |
Silva, F.C. Simões, R. |
author_role |
author |
author2 |
Simões, R. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Silva, F.C. Simões, R. |
dc.subject.por.fl_str_mv |
Inertia of matrices Lyapunov equation Stein equation |
topic |
Inertia of matrices Lyapunov equation Stein equation |
description |
Let L ∈ Cn × n and let H, K ∈ Cn × n be Hermitian matrices. Some already known results, including the general inertia theorem, give partial answers to the following problem: find a complete set of relations between the similarity class of L and the congruence classes of H and K, when the Lyapunov equation LH + HL* = K is satisfied. In this paper, we solve this problem when L is nonderogatory, H is nonsingular and K has at least one eigenvalue with positive real part and one eigenvalue with negative real part. Our result generalizes a previous paper by L. M. DeAlba. The corresponding problem with the Stein equation follows easily using a Cayley transform. © 2007 Elsevier Inc. All rights reserved. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-01T00:00:00Z 2007 2012-05-02T15:43:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/8432 |
url |
http://hdl.handle.net/10773/8432 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0024-3795 10.1016/j.laa.2007.05.001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137480010629120 |