Entropy and compression: two measures of complexity

Detalhes bibliográficos
Autor(a) principal: Teresa Sarmento Henriques
Data de Publicação: 2013
Outros Autores: Goncalves,H, Luís Filipe Antunes, Matias,M, Bernardes,J, Santos,C
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/7069
http://dx.doi.org/10.1111/jep.12068
Resumo: Rationale, aims and objectivesTraditional complexity measures are used to capture the amount of structured information present in a certain phenomenon. Several approaches developed to facilitate the characterization of complexity have been described in the related literature. Fetal heart rate (FHR) monitoring has been used and improved during the last decades. The importance of these studies lies on an attempt to predict the fetus outcome, but complexity measures are not yet established in clinical practice. In this study, we have focused on two conceptually different measures: Shannon entropy, a probabilistic approach, and Kolmogorov complexity, an algorithmic approach. The main aim of the current investigation was to show that approximation to Kolmogorov complexity through different compressors, although applied to a lesser extent, may be as useful as Shannon entropy calculated by approximation through different entropies, which has been successfully applied to different scientific areas. MethodsTo illustrate the applicability of both approaches, two entropy measures, approximate and sample entropy, and two compressors, paq8l and bzip2, were considered. These indices were applied to FHR tracings pertaining to a dataset composed of 48 delivered fetuses with umbilical artery blood (UAB) pH in the normal range (pH7.20), 10 delivered mildly acidemic fetuses and 10 moderate-to-severe acidemic fetuses. The complexity indices were computed on the initial and final segments of the last hour of labour, considering 5- and 10-minute segments. ResultsIn our sample set, both entropies and compressors were successfully utilized to distinguish fetuses at risk of hypoxia from healthy ones. Fetuses with lower UAB pH presented significantly lower entropy and compression indices, more markedly in the final segments. ConclusionsThe combination of these conceptually different measures appeared to present an improved approach in the characterization of different pathophysiological states, reinforcing the theory that entropies and compressors measure different complexity features. In view of these findings, we recommend a combination of the two approaches.
id RCAP_cdeea488d3e038f3b5423383a0054d1b
oai_identifier_str oai:repositorio.inesctec.pt:123456789/7069
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Entropy and compression: two measures of complexityRationale, aims and objectivesTraditional complexity measures are used to capture the amount of structured information present in a certain phenomenon. Several approaches developed to facilitate the characterization of complexity have been described in the related literature. Fetal heart rate (FHR) monitoring has been used and improved during the last decades. The importance of these studies lies on an attempt to predict the fetus outcome, but complexity measures are not yet established in clinical practice. In this study, we have focused on two conceptually different measures: Shannon entropy, a probabilistic approach, and Kolmogorov complexity, an algorithmic approach. The main aim of the current investigation was to show that approximation to Kolmogorov complexity through different compressors, although applied to a lesser extent, may be as useful as Shannon entropy calculated by approximation through different entropies, which has been successfully applied to different scientific areas. MethodsTo illustrate the applicability of both approaches, two entropy measures, approximate and sample entropy, and two compressors, paq8l and bzip2, were considered. These indices were applied to FHR tracings pertaining to a dataset composed of 48 delivered fetuses with umbilical artery blood (UAB) pH in the normal range (pH7.20), 10 delivered mildly acidemic fetuses and 10 moderate-to-severe acidemic fetuses. The complexity indices were computed on the initial and final segments of the last hour of labour, considering 5- and 10-minute segments. ResultsIn our sample set, both entropies and compressors were successfully utilized to distinguish fetuses at risk of hypoxia from healthy ones. Fetuses with lower UAB pH presented significantly lower entropy and compression indices, more markedly in the final segments. ConclusionsThe combination of these conceptually different measures appeared to present an improved approach in the characterization of different pathophysiological states, reinforcing the theory that entropies and compressors measure different complexity features. In view of these findings, we recommend a combination of the two approaches.2018-01-19T11:12:26Z2013-01-01T00:00:00Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/7069http://dx.doi.org/10.1111/jep.12068engTeresa Sarmento HenriquesGoncalves,HLuís Filipe AntunesMatias,MBernardes,JSantos,Cinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:40Zoai:repositorio.inesctec.pt:123456789/7069Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:53:28.093156Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Entropy and compression: two measures of complexity
title Entropy and compression: two measures of complexity
spellingShingle Entropy and compression: two measures of complexity
Teresa Sarmento Henriques
title_short Entropy and compression: two measures of complexity
title_full Entropy and compression: two measures of complexity
title_fullStr Entropy and compression: two measures of complexity
title_full_unstemmed Entropy and compression: two measures of complexity
title_sort Entropy and compression: two measures of complexity
author Teresa Sarmento Henriques
author_facet Teresa Sarmento Henriques
Goncalves,H
Luís Filipe Antunes
Matias,M
Bernardes,J
Santos,C
author_role author
author2 Goncalves,H
Luís Filipe Antunes
Matias,M
Bernardes,J
Santos,C
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Teresa Sarmento Henriques
Goncalves,H
Luís Filipe Antunes
Matias,M
Bernardes,J
Santos,C
description Rationale, aims and objectivesTraditional complexity measures are used to capture the amount of structured information present in a certain phenomenon. Several approaches developed to facilitate the characterization of complexity have been described in the related literature. Fetal heart rate (FHR) monitoring has been used and improved during the last decades. The importance of these studies lies on an attempt to predict the fetus outcome, but complexity measures are not yet established in clinical practice. In this study, we have focused on two conceptually different measures: Shannon entropy, a probabilistic approach, and Kolmogorov complexity, an algorithmic approach. The main aim of the current investigation was to show that approximation to Kolmogorov complexity through different compressors, although applied to a lesser extent, may be as useful as Shannon entropy calculated by approximation through different entropies, which has been successfully applied to different scientific areas. MethodsTo illustrate the applicability of both approaches, two entropy measures, approximate and sample entropy, and two compressors, paq8l and bzip2, were considered. These indices were applied to FHR tracings pertaining to a dataset composed of 48 delivered fetuses with umbilical artery blood (UAB) pH in the normal range (pH7.20), 10 delivered mildly acidemic fetuses and 10 moderate-to-severe acidemic fetuses. The complexity indices were computed on the initial and final segments of the last hour of labour, considering 5- and 10-minute segments. ResultsIn our sample set, both entropies and compressors were successfully utilized to distinguish fetuses at risk of hypoxia from healthy ones. Fetuses with lower UAB pH presented significantly lower entropy and compression indices, more markedly in the final segments. ConclusionsThe combination of these conceptually different measures appeared to present an improved approach in the characterization of different pathophysiological states, reinforcing the theory that entropies and compressors measure different complexity features. In view of these findings, we recommend a combination of the two approaches.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01T00:00:00Z
2013
2018-01-19T11:12:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/7069
http://dx.doi.org/10.1111/jep.12068
url http://repositorio.inesctec.pt/handle/123456789/7069
http://dx.doi.org/10.1111/jep.12068
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131609056673792