Entropy Measures vs. Kolmogorov Complexity
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/2961 http://dx.doi.org/10.3390/e13030595 |
Resumo: | Kolmogorov complexity and Shannon entropy are conceptually different measures. However, for any recursive probability distribution, the expected value of Kolmogorov complexity equals its Shannon entropy, up to a constant. We study if a similar relationship holds for R´enyi and Tsallis entropies of order α, showing that it only holds for α = 1. Regarding a time-bounded analogue relationship, we show that, for some distributions we have a similar result. We prove that, for universal time-bounded distribution mt(x), Tsallis and Rényi entropies converge if and only if α is greater than 1. We also establish the uniform continuity of these entropies. |
id |
RCAP_0f4a893676095fa8971c250942235f5a |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/2961 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Entropy Measures vs. Kolmogorov ComplexityKolmogorov complexity and Shannon entropy are conceptually different measures. However, for any recursive probability distribution, the expected value of Kolmogorov complexity equals its Shannon entropy, up to a constant. We study if a similar relationship holds for R´enyi and Tsallis entropies of order α, showing that it only holds for α = 1. Regarding a time-bounded analogue relationship, we show that, for some distributions we have a similar result. We prove that, for universal time-bounded distribution mt(x), Tsallis and Rényi entropies converge if and only if α is greater than 1. We also establish the uniform continuity of these entropies.2017-11-16T14:21:34Z2011-01-01T00:00:00Z2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/2961http://dx.doi.org/10.3390/e13030595engAndré SoutoLuís Filipe AntunesAndreia TeixeiraArmando Matosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:51Zoai:repositorio.inesctec.pt:123456789/2961Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:53:43.109774Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Entropy Measures vs. Kolmogorov Complexity |
title |
Entropy Measures vs. Kolmogorov Complexity |
spellingShingle |
Entropy Measures vs. Kolmogorov Complexity André Souto |
title_short |
Entropy Measures vs. Kolmogorov Complexity |
title_full |
Entropy Measures vs. Kolmogorov Complexity |
title_fullStr |
Entropy Measures vs. Kolmogorov Complexity |
title_full_unstemmed |
Entropy Measures vs. Kolmogorov Complexity |
title_sort |
Entropy Measures vs. Kolmogorov Complexity |
author |
André Souto |
author_facet |
André Souto Luís Filipe Antunes Andreia Teixeira Armando Matos |
author_role |
author |
author2 |
Luís Filipe Antunes Andreia Teixeira Armando Matos |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
André Souto Luís Filipe Antunes Andreia Teixeira Armando Matos |
description |
Kolmogorov complexity and Shannon entropy are conceptually different measures. However, for any recursive probability distribution, the expected value of Kolmogorov complexity equals its Shannon entropy, up to a constant. We study if a similar relationship holds for R´enyi and Tsallis entropies of order α, showing that it only holds for α = 1. Regarding a time-bounded analogue relationship, we show that, for some distributions we have a similar result. We prove that, for universal time-bounded distribution mt(x), Tsallis and Rényi entropies converge if and only if α is greater than 1. We also establish the uniform continuity of these entropies. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01-01T00:00:00Z 2011 2017-11-16T14:21:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/2961 http://dx.doi.org/10.3390/e13030595 |
url |
http://repositorio.inesctec.pt/handle/123456789/2961 http://dx.doi.org/10.3390/e13030595 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131611162214400 |