Dynamics of a quasi-quadratic map
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/24729 |
Resumo: | We consider the map $\cchi:\Q\to\Q$ given by $ \cchi(x)= x\ceil{x}$, where $\ceil{x}$ denotes the smallest integer greater than or equal to $x$, and study the problem of finding, for each rational, the smallest number of iterations by $\cchi$ that sends it into an integer. Given two natural numbers $M$ and $n$, we prove that the set of numerators of the irreducible fractions that have denominator$M$ and whose orbits by $\cchi$ reach an integer in exactly $n$ iterations is a disjoint union of congruence classes modulo $M^{n+1}$. Moreover, we establish a finite procedure to determine them. We also describe an efficient algorithm to decide if an orbit of a rational number bigger than one fails to hit an integer until a prescribed number of iterations have elapsed, and deduce that the probability that such an orbit enters $\Z$ is equal to one. |
id |
RCAP_cdfcae027e1df95b129e247974002d4a |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/24729 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Dynamics of a quasi-quadratic mapDiscrete dynamical systemCeiling functionDensityCovering systemScience & TechnologyWe consider the map $\cchi:\Q\to\Q$ given by $ \cchi(x)= x\ceil{x}$, where $\ceil{x}$ denotes the smallest integer greater than or equal to $x$, and study the problem of finding, for each rational, the smallest number of iterations by $\cchi$ that sends it into an integer. Given two natural numbers $M$ and $n$, we prove that the set of numerators of the irreducible fractions that have denominator$M$ and whose orbits by $\cchi$ reach an integer in exactly $n$ iterations is a disjoint union of congruence classes modulo $M^{n+1}$. Moreover, we establish a finite procedure to determine them. We also describe an efficient algorithm to decide if an orbit of a rational number bigger than one fails to hit an integer until a prescribed number of iterations have elapsed, and deduce that the probability that such an orbit enters $\Z$ is equal to one.Fundação para a Ciência e a Tecnologia (FCT)Taylor and FrancisUniversidade do MinhoAzevedo, AssisCarvalho, MariaMachiavelo, António20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/24729eng1023-619810.1080/10236198.2013.805754http://dx.doi.org/10.1080/10236198.2013.805754info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:49:18Zoai:repositorium.sdum.uminho.pt:1822/24729Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:47:44.832128Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Dynamics of a quasi-quadratic map |
title |
Dynamics of a quasi-quadratic map |
spellingShingle |
Dynamics of a quasi-quadratic map Azevedo, Assis Discrete dynamical system Ceiling function Density Covering system Science & Technology |
title_short |
Dynamics of a quasi-quadratic map |
title_full |
Dynamics of a quasi-quadratic map |
title_fullStr |
Dynamics of a quasi-quadratic map |
title_full_unstemmed |
Dynamics of a quasi-quadratic map |
title_sort |
Dynamics of a quasi-quadratic map |
author |
Azevedo, Assis |
author_facet |
Azevedo, Assis Carvalho, Maria Machiavelo, António |
author_role |
author |
author2 |
Carvalho, Maria Machiavelo, António |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Azevedo, Assis Carvalho, Maria Machiavelo, António |
dc.subject.por.fl_str_mv |
Discrete dynamical system Ceiling function Density Covering system Science & Technology |
topic |
Discrete dynamical system Ceiling function Density Covering system Science & Technology |
description |
We consider the map $\cchi:\Q\to\Q$ given by $ \cchi(x)= x\ceil{x}$, where $\ceil{x}$ denotes the smallest integer greater than or equal to $x$, and study the problem of finding, for each rational, the smallest number of iterations by $\cchi$ that sends it into an integer. Given two natural numbers $M$ and $n$, we prove that the set of numerators of the irreducible fractions that have denominator$M$ and whose orbits by $\cchi$ reach an integer in exactly $n$ iterations is a disjoint union of congruence classes modulo $M^{n+1}$. Moreover, we establish a finite procedure to determine them. We also describe an efficient algorithm to decide if an orbit of a rational number bigger than one fails to hit an integer until a prescribed number of iterations have elapsed, and deduce that the probability that such an orbit enters $\Z$ is equal to one. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/24729 |
url |
http://hdl.handle.net/1822/24729 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1023-6198 10.1080/10236198.2013.805754 http://dx.doi.org/10.1080/10236198.2013.805754 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor and Francis |
publisher.none.fl_str_mv |
Taylor and Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133052098576384 |