Dynamics of a quasi-quadratic map
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/90734 |
Resumo: | We consider the map X : Q --> Q given by X(x) = inverted right perpendicularxinverted left perpendicular, where inverted right perpendicular x inverted left perpendicular denotes the smallest integer greater than or equal to x, and study the problem of finding, for each rational, the smallest number of iterations by x that sends it into an integer. Given two natural numbers M and n, we prove that the set of numerators of the irreducible fractions that have denominator M and whose orbits by x reach an integer in exactly n iterations is a disjoint union of congruence classes modulo Mn+1. Moreover, we establish a finite procedure to determine them. We also describe an efficient algorithm to decide whether an orbit of a rational number bigger than one fails to hit an integer until a prescribed number of iterations have elapsed, and deduce that the probability that such an orbit enters Z is equal to 1. |
id |
RCAP_dffffbb0c9f1650e7cc54895d2c24c30 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/90734 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Dynamics of a quasi-quadratic mapTeoria dos números, MatemáticaNumber theory, MathematicsWe consider the map X : Q --> Q given by X(x) = inverted right perpendicularxinverted left perpendicular, where inverted right perpendicular x inverted left perpendicular denotes the smallest integer greater than or equal to x, and study the problem of finding, for each rational, the smallest number of iterations by x that sends it into an integer. Given two natural numbers M and n, we prove that the set of numerators of the irreducible fractions that have denominator M and whose orbits by x reach an integer in exactly n iterations is a disjoint union of congruence classes modulo Mn+1. Moreover, we establish a finite procedure to determine them. We also describe an efficient algorithm to decide whether an orbit of a rational number bigger than one fails to hit an integer until a prescribed number of iterations have elapsed, and deduce that the probability that such an orbit enters Z is equal to 1.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/90734eng1023-619810.1080/10236198.2013.805754Assis AzevedoMaria CarvalhoAntonio Machiaveloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T12:56:01Zoai:repositorio-aberto.up.pt:10216/90734Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:29:49.884584Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Dynamics of a quasi-quadratic map |
title |
Dynamics of a quasi-quadratic map |
spellingShingle |
Dynamics of a quasi-quadratic map Assis Azevedo Teoria dos números, Matemática Number theory, Mathematics |
title_short |
Dynamics of a quasi-quadratic map |
title_full |
Dynamics of a quasi-quadratic map |
title_fullStr |
Dynamics of a quasi-quadratic map |
title_full_unstemmed |
Dynamics of a quasi-quadratic map |
title_sort |
Dynamics of a quasi-quadratic map |
author |
Assis Azevedo |
author_facet |
Assis Azevedo Maria Carvalho Antonio Machiavelo |
author_role |
author |
author2 |
Maria Carvalho Antonio Machiavelo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Assis Azevedo Maria Carvalho Antonio Machiavelo |
dc.subject.por.fl_str_mv |
Teoria dos números, Matemática Number theory, Mathematics |
topic |
Teoria dos números, Matemática Number theory, Mathematics |
description |
We consider the map X : Q --> Q given by X(x) = inverted right perpendicularxinverted left perpendicular, where inverted right perpendicular x inverted left perpendicular denotes the smallest integer greater than or equal to x, and study the problem of finding, for each rational, the smallest number of iterations by x that sends it into an integer. Given two natural numbers M and n, we prove that the set of numerators of the irreducible fractions that have denominator M and whose orbits by x reach an integer in exactly n iterations is a disjoint union of congruence classes modulo Mn+1. Moreover, we establish a finite procedure to determine them. We also describe an efficient algorithm to decide whether an orbit of a rational number bigger than one fails to hit an integer until a prescribed number of iterations have elapsed, and deduce that the probability that such an orbit enters Z is equal to 1. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/90734 |
url |
https://hdl.handle.net/10216/90734 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1023-6198 10.1080/10236198.2013.805754 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135606245163009 |