Dynamics of a quasi-quadratic map

Detalhes bibliográficos
Autor(a) principal: Assis Azevedo
Data de Publicação: 2014
Outros Autores: Maria Carvalho, Antonio Machiavelo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/90734
Resumo: We consider the map X : Q --> Q given by X(x) = inverted right perpendicularxinverted left perpendicular, where inverted right perpendicular x inverted left perpendicular denotes the smallest integer greater than or equal to x, and study the problem of finding, for each rational, the smallest number of iterations by x that sends it into an integer. Given two natural numbers M and n, we prove that the set of numerators of the irreducible fractions that have denominator M and whose orbits by x reach an integer in exactly n iterations is a disjoint union of congruence classes modulo Mn+1. Moreover, we establish a finite procedure to determine them. We also describe an efficient algorithm to decide whether an orbit of a rational number bigger than one fails to hit an integer until a prescribed number of iterations have elapsed, and deduce that the probability that such an orbit enters Z is equal to 1.
id RCAP_dffffbb0c9f1650e7cc54895d2c24c30
oai_identifier_str oai:repositorio-aberto.up.pt:10216/90734
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Dynamics of a quasi-quadratic mapTeoria dos números, MatemáticaNumber theory, MathematicsWe consider the map X : Q --> Q given by X(x) = inverted right perpendicularxinverted left perpendicular, where inverted right perpendicular x inverted left perpendicular denotes the smallest integer greater than or equal to x, and study the problem of finding, for each rational, the smallest number of iterations by x that sends it into an integer. Given two natural numbers M and n, we prove that the set of numerators of the irreducible fractions that have denominator M and whose orbits by x reach an integer in exactly n iterations is a disjoint union of congruence classes modulo Mn+1. Moreover, we establish a finite procedure to determine them. We also describe an efficient algorithm to decide whether an orbit of a rational number bigger than one fails to hit an integer until a prescribed number of iterations have elapsed, and deduce that the probability that such an orbit enters Z is equal to 1.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/90734eng1023-619810.1080/10236198.2013.805754Assis AzevedoMaria CarvalhoAntonio Machiaveloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T12:56:01Zoai:repositorio-aberto.up.pt:10216/90734Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:29:49.884584Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Dynamics of a quasi-quadratic map
title Dynamics of a quasi-quadratic map
spellingShingle Dynamics of a quasi-quadratic map
Assis Azevedo
Teoria dos números, Matemática
Number theory, Mathematics
title_short Dynamics of a quasi-quadratic map
title_full Dynamics of a quasi-quadratic map
title_fullStr Dynamics of a quasi-quadratic map
title_full_unstemmed Dynamics of a quasi-quadratic map
title_sort Dynamics of a quasi-quadratic map
author Assis Azevedo
author_facet Assis Azevedo
Maria Carvalho
Antonio Machiavelo
author_role author
author2 Maria Carvalho
Antonio Machiavelo
author2_role author
author
dc.contributor.author.fl_str_mv Assis Azevedo
Maria Carvalho
Antonio Machiavelo
dc.subject.por.fl_str_mv Teoria dos números, Matemática
Number theory, Mathematics
topic Teoria dos números, Matemática
Number theory, Mathematics
description We consider the map X : Q --> Q given by X(x) = inverted right perpendicularxinverted left perpendicular, where inverted right perpendicular x inverted left perpendicular denotes the smallest integer greater than or equal to x, and study the problem of finding, for each rational, the smallest number of iterations by x that sends it into an integer. Given two natural numbers M and n, we prove that the set of numerators of the irreducible fractions that have denominator M and whose orbits by x reach an integer in exactly n iterations is a disjoint union of congruence classes modulo Mn+1. Moreover, we establish a finite procedure to determine them. We also describe an efficient algorithm to decide whether an orbit of a rational number bigger than one fails to hit an integer until a prescribed number of iterations have elapsed, and deduce that the probability that such an orbit enters Z is equal to 1.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/90734
url https://hdl.handle.net/10216/90734
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1023-6198
10.1080/10236198.2013.805754
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135606245163009