Denoising using local projective subspace methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.26/47371 |
Resumo: | In this paper we present denoising algorithms for enhancing noisy signals based on Local ICA (LICA), Delayed AMUSE (dAMUSE) and Kernel PCA (KPCA). The algorithm LICA relies on applying ICA locally to clusters of signals embedded in a high-dimensional feature space of delayed coordinates. The components resembling the signals can be detected by various criteria like estimators of kurtosis or the variance of autocorrelations depending on the statistical nature of the signal. The algorithm proposed can be applied favorably to the problem of denoising multi-dimensional data. Another projective subspace denoising method using delayed coordinates has been proposed recently with the algorithm dAMUSE. It combines the solution of blind source separation problems with denoising efforts in an elegant way and proofs to be very efficient and fast. Finally, KPCA represents a non-linear projective subspace method that is well suited for denoising also. Besides illustrative applications to toy examples and images, we provide an application of all algorithms considered to the analysis of protein NMR spectra. |
id |
RCAP_cf2d1d9d952686db2f12425a32554887 |
---|---|
oai_identifier_str |
oai:comum.rcaap.pt:10400.26/47371 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Denoising using local projective subspace methodsLocal ICADelayed AMUSEProjective subspace denoising embeddingIn this paper we present denoising algorithms for enhancing noisy signals based on Local ICA (LICA), Delayed AMUSE (dAMUSE) and Kernel PCA (KPCA). The algorithm LICA relies on applying ICA locally to clusters of signals embedded in a high-dimensional feature space of delayed coordinates. The components resembling the signals can be detected by various criteria like estimators of kurtosis or the variance of autocorrelations depending on the statistical nature of the signal. The algorithm proposed can be applied favorably to the problem of denoising multi-dimensional data. Another projective subspace denoising method using delayed coordinates has been proposed recently with the algorithm dAMUSE. It combines the solution of blind source separation problems with denoising efforts in an elegant way and proofs to be very efficient and fast. Finally, KPCA represents a non-linear projective subspace method that is well suited for denoising also. Besides illustrative applications to toy examples and images, we provide an application of all algorithms considered to the analysis of protein NMR spectra.ElsevierRepositório ComumGruber, P.Stadlthanner, K.Böhm, M.Theis, F.J.Lang, E.W.Tomé, A.M.Teixeira, AnaPuntonet, C.G.Gorriz Saéz, J.M.2023-10-20T12:22:40Z20062006-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/47371eng10.1016/j.neucom.2005.12.025info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-26T02:16:21Zoai:comum.rcaap.pt:10400.26/47371Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:39:33.430107Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Denoising using local projective subspace methods |
title |
Denoising using local projective subspace methods |
spellingShingle |
Denoising using local projective subspace methods Gruber, P. Local ICA Delayed AMUSE Projective subspace denoising embedding |
title_short |
Denoising using local projective subspace methods |
title_full |
Denoising using local projective subspace methods |
title_fullStr |
Denoising using local projective subspace methods |
title_full_unstemmed |
Denoising using local projective subspace methods |
title_sort |
Denoising using local projective subspace methods |
author |
Gruber, P. |
author_facet |
Gruber, P. Stadlthanner, K. Böhm, M. Theis, F.J. Lang, E.W. Tomé, A.M. Teixeira, Ana Puntonet, C.G. Gorriz Saéz, J.M. |
author_role |
author |
author2 |
Stadlthanner, K. Böhm, M. Theis, F.J. Lang, E.W. Tomé, A.M. Teixeira, Ana Puntonet, C.G. Gorriz Saéz, J.M. |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
Repositório Comum |
dc.contributor.author.fl_str_mv |
Gruber, P. Stadlthanner, K. Böhm, M. Theis, F.J. Lang, E.W. Tomé, A.M. Teixeira, Ana Puntonet, C.G. Gorriz Saéz, J.M. |
dc.subject.por.fl_str_mv |
Local ICA Delayed AMUSE Projective subspace denoising embedding |
topic |
Local ICA Delayed AMUSE Projective subspace denoising embedding |
description |
In this paper we present denoising algorithms for enhancing noisy signals based on Local ICA (LICA), Delayed AMUSE (dAMUSE) and Kernel PCA (KPCA). The algorithm LICA relies on applying ICA locally to clusters of signals embedded in a high-dimensional feature space of delayed coordinates. The components resembling the signals can be detected by various criteria like estimators of kurtosis or the variance of autocorrelations depending on the statistical nature of the signal. The algorithm proposed can be applied favorably to the problem of denoising multi-dimensional data. Another projective subspace denoising method using delayed coordinates has been proposed recently with the algorithm dAMUSE. It combines the solution of blind source separation problems with denoising efforts in an elegant way and proofs to be very efficient and fast. Finally, KPCA represents a non-linear projective subspace method that is well suited for denoising also. Besides illustrative applications to toy examples and images, we provide an application of all algorithms considered to the analysis of protein NMR spectra. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 2006-01-01T00:00:00Z 2023-10-20T12:22:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/47371 |
url |
http://hdl.handle.net/10400.26/47371 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.neucom.2005.12.025 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133657178308608 |