dAMUSE : a new tool for denoising and blind source separation

Detalhes bibliográficos
Autor(a) principal: Tomé, A.M.
Data de Publicação: 2005
Outros Autores: Teixeira, Ana, Lang, E.W., Stadlthanner, K., Rocha, A.P., Almeida, R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.26/47370
Resumo: In this work a generalized version of AMUSE, called dAMUSE is proposed. The main modification consists in embedding the observed mixed signals in a high-dimensional feature space of delayed coordinates. With the embedded signals a matrix pencil is formed and its generalized eigendecomposition is computed similar to the algorithm AMUSE. We show that in this case the uncorrelated output signals are filtered versions of the unknown source signals. Further, denoising the data can be achieved conveniently in parallel with the signal separation. Numerical simulations using artificially mixed signals are presented to show the performance of the method. Further results of a heart rate variability (HRV) study are discussed showing that the output signals are related with LF (low frequency) and HF (high frequency) fluctuations. Finally, an application to separate artifacts from 2D NOESY NMR spectra and to denoise the reconstructed artefact-free spectra is presented also.
id RCAP_5f19853f3a3555e713d7748b095525ca
oai_identifier_str oai:comum.rcaap.pt:10400.26/47370
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling dAMUSE : a new tool for denoising and blind source separationEmbedding signalsGeneralized eigenvalue decompositionBlind source separation; DenoisingBiomedical applicationsIn this work a generalized version of AMUSE, called dAMUSE is proposed. The main modification consists in embedding the observed mixed signals in a high-dimensional feature space of delayed coordinates. With the embedded signals a matrix pencil is formed and its generalized eigendecomposition is computed similar to the algorithm AMUSE. We show that in this case the uncorrelated output signals are filtered versions of the unknown source signals. Further, denoising the data can be achieved conveniently in parallel with the signal separation. Numerical simulations using artificially mixed signals are presented to show the performance of the method. Further results of a heart rate variability (HRV) study are discussed showing that the output signals are related with LF (low frequency) and HF (high frequency) fluctuations. Finally, an application to separate artifacts from 2D NOESY NMR spectra and to denoise the reconstructed artefact-free spectra is presented also.ElsevierRepositório ComumTomé, A.M.Teixeira, AnaLang, E.W.Stadlthanner, K.Rocha, A.P.Almeida, R.2023-10-20T12:04:20Z20052005-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/47370eng10.1016/j.dsp.2005.01.004info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-26T02:16:19Zoai:comum.rcaap.pt:10400.26/47370Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:39:33.331186Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv dAMUSE : a new tool for denoising and blind source separation
title dAMUSE : a new tool for denoising and blind source separation
spellingShingle dAMUSE : a new tool for denoising and blind source separation
Tomé, A.M.
Embedding signals
Generalized eigenvalue decomposition
Blind source separation; Denoising
Biomedical applications
title_short dAMUSE : a new tool for denoising and blind source separation
title_full dAMUSE : a new tool for denoising and blind source separation
title_fullStr dAMUSE : a new tool for denoising and blind source separation
title_full_unstemmed dAMUSE : a new tool for denoising and blind source separation
title_sort dAMUSE : a new tool for denoising and blind source separation
author Tomé, A.M.
author_facet Tomé, A.M.
Teixeira, Ana
Lang, E.W.
Stadlthanner, K.
Rocha, A.P.
Almeida, R.
author_role author
author2 Teixeira, Ana
Lang, E.W.
Stadlthanner, K.
Rocha, A.P.
Almeida, R.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório Comum
dc.contributor.author.fl_str_mv Tomé, A.M.
Teixeira, Ana
Lang, E.W.
Stadlthanner, K.
Rocha, A.P.
Almeida, R.
dc.subject.por.fl_str_mv Embedding signals
Generalized eigenvalue decomposition
Blind source separation; Denoising
Biomedical applications
topic Embedding signals
Generalized eigenvalue decomposition
Blind source separation; Denoising
Biomedical applications
description In this work a generalized version of AMUSE, called dAMUSE is proposed. The main modification consists in embedding the observed mixed signals in a high-dimensional feature space of delayed coordinates. With the embedded signals a matrix pencil is formed and its generalized eigendecomposition is computed similar to the algorithm AMUSE. We show that in this case the uncorrelated output signals are filtered versions of the unknown source signals. Further, denoising the data can be achieved conveniently in parallel with the signal separation. Numerical simulations using artificially mixed signals are presented to show the performance of the method. Further results of a heart rate variability (HRV) study are discussed showing that the output signals are related with LF (low frequency) and HF (high frequency) fluctuations. Finally, an application to separate artifacts from 2D NOESY NMR spectra and to denoise the reconstructed artefact-free spectra is presented also.
publishDate 2005
dc.date.none.fl_str_mv 2005
2005-01-01T00:00:00Z
2023-10-20T12:04:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/47370
url http://hdl.handle.net/10400.26/47370
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.dsp.2005.01.004
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133657175162880