Metal deposition using Ionic liquids

Detalhes bibliográficos
Autor(a) principal: Mota, Carlos Miguel Moreira
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/2516
Resumo: There is an interest to create zinc/tin alloys to replace cadmium as a corrosion protective coating material. Existing aqueous electroplating systems for these alloys are commercially available but have several limitations. Dangerous and highly toxic complexing agents are uses e.g. cyanides. To overcome these problems, ionic liquids could provide a solution to obtain an alloy containing 20 to 30% of zinc. Ionic liquids (IL’s) often have wider electrochemical windows which allow the deposition of e.g. refractive metals that can not be deposited from aqueous solutions. In IL’s it is often not necessary to add complexing agents. The Zn/Sn alloy deposition from IL’s is therefore a promising application for the plating industry. Nevertheless, there are some issues with this alternative for aqueous systems. The degradation of the organic components, the control of the concentration of two metals and the risk of a two phase deposition instead of an alloy had to be overcome first. It is the main purpose of this thesis to obtain a Zn/Sn alloy with 20% zinc using IL’s as an electrolyte. First a separate study was performed on both the zinc and the tin deposition. Afterwards, an attempt to deposit a Zn/Sn alloy was made. An introduction to a study about the electrodeposition of refractive metals concludes this work. It initiated the research for oxygen-free IL’s to deposit molybdenum or tungsten. Several parameters (temperature, metal source and concentration, organic complexing agents,…) were optimized for both the zinc, tin and zinc/tin deposition. Experiments were performed both in a parallel plate cell and a Hull cell, so as to investigate the effect of current density as well. Ethaline200 was selected as electrolyte. As substrate, brass and iron were selected, while as anode a plate of the metal to deposit was chosen, tin for the alloy. The best efficiencies were always obtained on brass; however the iron substrate resulted in the best depositions. A concentration of 0.27M ZnCl2, 0.07M SnCl2 with 0.015M of K3-HEDTA as complexant resulted in a deposition containing the desired alloy with the amount of 20% zinc and 80% tin with good appearance. Refractory metals as molybdenum and tungsten cannot be electrodeposited from aqueous solutions without forming a co-deposition with Ni, Co or Fe. Here, IL’s could again provide a solution. A first requirement is the dissolution of a metal source. MoO3 could be suitable, however there are doubts about using oxides. Oxygen-free IL’s were sought for. A first attempt was the combination of ZnCl2 with chlormequat (CCC), which gave liquids below 150°C in molar ratios of 2 : 1 and 3 : 1. Unfortuna tely, MoO3 didn’t dissolve in these IL’s. Another route to design oxygen-free IL’s was the synthesis of quaternary ammonium salts. None of the methods used, proved viable as reaction time was long and resulted in very low yields. Therefore, no sufficient quantities were obtained to perform the possible electrochemical behavior of refractive metals.
id RCAP_cf562a8311dbb412ceb97bbe03f79231
oai_identifier_str oai:recipp.ipp.pt:10400.22/2516
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Metal deposition using Ionic liquidsDeposição de metais usando liquidos IónicosIonic liquidsElectrodepositionZinc/tin alloysRefractory metalsLíquidos iónicosElectrodeposiçãoLigas de Zn/SnMetais refractáriosThere is an interest to create zinc/tin alloys to replace cadmium as a corrosion protective coating material. Existing aqueous electroplating systems for these alloys are commercially available but have several limitations. Dangerous and highly toxic complexing agents are uses e.g. cyanides. To overcome these problems, ionic liquids could provide a solution to obtain an alloy containing 20 to 30% of zinc. Ionic liquids (IL’s) often have wider electrochemical windows which allow the deposition of e.g. refractive metals that can not be deposited from aqueous solutions. In IL’s it is often not necessary to add complexing agents. The Zn/Sn alloy deposition from IL’s is therefore a promising application for the plating industry. Nevertheless, there are some issues with this alternative for aqueous systems. The degradation of the organic components, the control of the concentration of two metals and the risk of a two phase deposition instead of an alloy had to be overcome first. It is the main purpose of this thesis to obtain a Zn/Sn alloy with 20% zinc using IL’s as an electrolyte. First a separate study was performed on both the zinc and the tin deposition. Afterwards, an attempt to deposit a Zn/Sn alloy was made. An introduction to a study about the electrodeposition of refractive metals concludes this work. It initiated the research for oxygen-free IL’s to deposit molybdenum or tungsten. Several parameters (temperature, metal source and concentration, organic complexing agents,…) were optimized for both the zinc, tin and zinc/tin deposition. Experiments were performed both in a parallel plate cell and a Hull cell, so as to investigate the effect of current density as well. Ethaline200 was selected as electrolyte. As substrate, brass and iron were selected, while as anode a plate of the metal to deposit was chosen, tin for the alloy. The best efficiencies were always obtained on brass; however the iron substrate resulted in the best depositions. A concentration of 0.27M ZnCl2, 0.07M SnCl2 with 0.015M of K3-HEDTA as complexant resulted in a deposition containing the desired alloy with the amount of 20% zinc and 80% tin with good appearance. Refractory metals as molybdenum and tungsten cannot be electrodeposited from aqueous solutions without forming a co-deposition with Ni, Co or Fe. Here, IL’s could again provide a solution. A first requirement is the dissolution of a metal source. MoO3 could be suitable, however there are doubts about using oxides. Oxygen-free IL’s were sought for. A first attempt was the combination of ZnCl2 with chlormequat (CCC), which gave liquids below 150°C in molar ratios of 2 : 1 and 3 : 1. Unfortuna tely, MoO3 didn’t dissolve in these IL’s. Another route to design oxygen-free IL’s was the synthesis of quaternary ammonium salts. None of the methods used, proved viable as reaction time was long and resulted in very low yields. Therefore, no sufficient quantities were obtained to perform the possible electrochemical behavior of refractive metals.Existe um interesse em criar ligas de zinco estanho para substituir o cádmio como um material de revestimento protector à corrosão. Existem sistemas aquosos de electrodeposição para estas ligas que estão disponíveis comercialmente, no entanto estes possuem algumas limitações. Agentes complexantes perigosos e altamente tóxicos são usados, como por exemplo cianetos. Para ultrapassar estes problemas, os líquidos iónicos (IL’S) podem fornecer uma solução para obter uma liga que contém 20-30% de zinco. Os líquidos iónicos (IL's) têm na sua maioria, uma ampla janela electroquímica que permite a deposição, por exemplo, de metais refractários que não podem ser depositados a partir de soluções aquosas. Com sistemas baseados em IL’s muitas vezes não é necessário adicionar agentes complexantes. A deposição de ligas de Zn/Sn a partir de líquidos iónicos é, portanto, uma aplicação promissora para a indústria de electrodeposição. No entanto, existem alguns problemas com esta alternativa para os sistemas aquosos. A degradação dos componentes orgânicos, o controlo da concentração dos dois metais no electrólito e o risco de uma deposição com duas fases em vez de uma liga, tiveram de ser superados antes. É o objectivo principal desta tese obter uma liga de Zn/Sn com 20% de zinco usando IL’s com electrólito. Primeiramente, foi realizado o estudo da electrodeposição de zinco e estanho separadamente. Posteriormente, foi feita uma tentativa para depositar uma liga de Zn/Sn. Como parte final deste trabalho foi feita uma introdução ao estudo sobre a electrodeposição de metais refractários em que foi iniciada a investigação de IL’s livres de oxigénio para depositar molibdénio ou tungsténio. Vários parâmetros (temperatura, fonte de metais e concentração, agentes orgânicos complexantes, etc.) foram optimizados para o estudo da electrodeposição de zinco, estanho e ligas de zinco e estanho. As experiencias foram realizadas tanto numa célula electrolítica paralela como numa célula de denominada de Hull, a fim de ser também investigado o efeito da densidade de corrente. O Ethaline200 foi seleccionado como electrólito. Como substrato, foram escolhidos o latão e o ferro, enquanto como ânodo foi escolhida uma placa do metal a ser depositado sendo que para o estudo da deposição da liga de Zn/Sn foi escolhida uma placa de estanho. As melhores eficiências foram sempre obtidas para as experiencias com o latão, contudo as melhores deposições foram obtidas para as experiências em que foi usado ferro como substrato. O depósito com a liga desejada, ou seja com 20% de zinco e 80% de estanho foi obtido para o electrólito onde foi usada uma concentração de 0.27M ZnCl2, 0.07 M SnCl2 com 0.015M de K3-HEDTA como agente complexante.Instituto Politécnico do Porto. Instituto Superior de Engenharia do PortoKatholieke Hogeschool Sint-LievenMatthijs, EdwardSilva, Paula CristinaRepositório Científico do Instituto Politécnico do PortoMota, Carlos Miguel Moreira2013-11-06T10:46:21Z20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/2516enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:42:02Zoai:recipp.ipp.pt:10400.22/2516Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:23:32.068356Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Metal deposition using Ionic liquids
Deposição de metais usando liquidos Iónicos
title Metal deposition using Ionic liquids
spellingShingle Metal deposition using Ionic liquids
Mota, Carlos Miguel Moreira
Ionic liquids
Electrodeposition
Zinc/tin alloys
Refractory metals
Líquidos iónicos
Electrodeposição
Ligas de Zn/Sn
Metais refractários
title_short Metal deposition using Ionic liquids
title_full Metal deposition using Ionic liquids
title_fullStr Metal deposition using Ionic liquids
title_full_unstemmed Metal deposition using Ionic liquids
title_sort Metal deposition using Ionic liquids
author Mota, Carlos Miguel Moreira
author_facet Mota, Carlos Miguel Moreira
author_role author
dc.contributor.none.fl_str_mv Matthijs, Edward
Silva, Paula Cristina
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Mota, Carlos Miguel Moreira
dc.subject.por.fl_str_mv Ionic liquids
Electrodeposition
Zinc/tin alloys
Refractory metals
Líquidos iónicos
Electrodeposição
Ligas de Zn/Sn
Metais refractários
topic Ionic liquids
Electrodeposition
Zinc/tin alloys
Refractory metals
Líquidos iónicos
Electrodeposição
Ligas de Zn/Sn
Metais refractários
description There is an interest to create zinc/tin alloys to replace cadmium as a corrosion protective coating material. Existing aqueous electroplating systems for these alloys are commercially available but have several limitations. Dangerous and highly toxic complexing agents are uses e.g. cyanides. To overcome these problems, ionic liquids could provide a solution to obtain an alloy containing 20 to 30% of zinc. Ionic liquids (IL’s) often have wider electrochemical windows which allow the deposition of e.g. refractive metals that can not be deposited from aqueous solutions. In IL’s it is often not necessary to add complexing agents. The Zn/Sn alloy deposition from IL’s is therefore a promising application for the plating industry. Nevertheless, there are some issues with this alternative for aqueous systems. The degradation of the organic components, the control of the concentration of two metals and the risk of a two phase deposition instead of an alloy had to be overcome first. It is the main purpose of this thesis to obtain a Zn/Sn alloy with 20% zinc using IL’s as an electrolyte. First a separate study was performed on both the zinc and the tin deposition. Afterwards, an attempt to deposit a Zn/Sn alloy was made. An introduction to a study about the electrodeposition of refractive metals concludes this work. It initiated the research for oxygen-free IL’s to deposit molybdenum or tungsten. Several parameters (temperature, metal source and concentration, organic complexing agents,…) were optimized for both the zinc, tin and zinc/tin deposition. Experiments were performed both in a parallel plate cell and a Hull cell, so as to investigate the effect of current density as well. Ethaline200 was selected as electrolyte. As substrate, brass and iron were selected, while as anode a plate of the metal to deposit was chosen, tin for the alloy. The best efficiencies were always obtained on brass; however the iron substrate resulted in the best depositions. A concentration of 0.27M ZnCl2, 0.07M SnCl2 with 0.015M of K3-HEDTA as complexant resulted in a deposition containing the desired alloy with the amount of 20% zinc and 80% tin with good appearance. Refractory metals as molybdenum and tungsten cannot be electrodeposited from aqueous solutions without forming a co-deposition with Ni, Co or Fe. Here, IL’s could again provide a solution. A first requirement is the dissolution of a metal source. MoO3 could be suitable, however there are doubts about using oxides. Oxygen-free IL’s were sought for. A first attempt was the combination of ZnCl2 with chlormequat (CCC), which gave liquids below 150°C in molar ratios of 2 : 1 and 3 : 1. Unfortuna tely, MoO3 didn’t dissolve in these IL’s. Another route to design oxygen-free IL’s was the synthesis of quaternary ammonium salts. None of the methods used, proved viable as reaction time was long and resulted in very low yields. Therefore, no sufficient quantities were obtained to perform the possible electrochemical behavior of refractive metals.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
2013-11-06T10:46:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/2516
url http://hdl.handle.net/10400.22/2516
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Politécnico do Porto. Instituto Superior de Engenharia do Porto
Katholieke Hogeschool Sint-Lieven
publisher.none.fl_str_mv Instituto Politécnico do Porto. Instituto Superior de Engenharia do Porto
Katholieke Hogeschool Sint-Lieven
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131330423816192