Adoption of Big Data and AI methods to manage medication administration and intensive care environments
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/155445 |
Resumo: | Artificial Intelligence (AI) has proven to be very helpful in different areas, including the medical field. One important parameter for healthcare professionals’ decision-making process is blood pressure, specifically mean arterial pressure (MAP). The application of AI in medicine, more specifically in Intensive Care Units (ICU) has the potential to improve the efficiency of healthcare and boost telemedicine operations with access to real-time predictions from remote locations. Operations that once required the presence of a healthcare professional, can be done at a distance, which facing the recent COVID-19 pandemic, proved to be crucial. This dissertation presents a solution to develop an AI system capable of accurately predicting MAP values. Many ICU patients suffer from sepsis or septic shock, and they can be identified by the need for vasopressors, such as noradrenaline, to keep their MAP above 65 mm Hg. The presented solution facilitates early interventions, thereby minimising the risk to patients. The current study reviews various machine learning (ML) models, training them to predict MAP values. One of the challenges is to see how the different models behave during their training process and choose the most promising one to test in a controlled environment. The dataset used to train the models contains identical data to the one generated by bedside monitors, which ensures that the models’ predictions align with real-world scenarios. The medical data generated is processed by a separate component that performs data cleaning, after which is directed to the application responsible for loading, classifying the data and utilising the ML model. To increase trust between healthcare professionals and the system to be developed, it is also intended to provide insights into how the results are achieved. The solution was integrated, for validation, with one of the telemedicine hubs deployed by the European project ICU4Covid through its CPS4TIC component. |
id |
RCAP_cf7046e31e38b5dbc5413a8c459a98be |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/155445 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Adoption of Big Data and AI methods to manage medication administration and intensive care environmentsTelemedicineArtificial IntelligenceMachine LearningDecision Support SystemsDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaArtificial Intelligence (AI) has proven to be very helpful in different areas, including the medical field. One important parameter for healthcare professionals’ decision-making process is blood pressure, specifically mean arterial pressure (MAP). The application of AI in medicine, more specifically in Intensive Care Units (ICU) has the potential to improve the efficiency of healthcare and boost telemedicine operations with access to real-time predictions from remote locations. Operations that once required the presence of a healthcare professional, can be done at a distance, which facing the recent COVID-19 pandemic, proved to be crucial. This dissertation presents a solution to develop an AI system capable of accurately predicting MAP values. Many ICU patients suffer from sepsis or septic shock, and they can be identified by the need for vasopressors, such as noradrenaline, to keep their MAP above 65 mm Hg. The presented solution facilitates early interventions, thereby minimising the risk to patients. The current study reviews various machine learning (ML) models, training them to predict MAP values. One of the challenges is to see how the different models behave during their training process and choose the most promising one to test in a controlled environment. The dataset used to train the models contains identical data to the one generated by bedside monitors, which ensures that the models’ predictions align with real-world scenarios. The medical data generated is processed by a separate component that performs data cleaning, after which is directed to the application responsible for loading, classifying the data and utilising the ML model. To increase trust between healthcare professionals and the system to be developed, it is also intended to provide insights into how the results are achieved. The solution was integrated, for validation, with one of the telemedicine hubs deployed by the European project ICU4Covid through its CPS4TIC component.A Inteligência Artificial (IA) é muito útil em diferentes áreas, incluindo a saúde. Um parâmetro importante para a tomada de decisão dos profissionais de saúde é a pressão arterial, especificamente a pressão arterial média (PAM). A aplicação da IA na medicina, mais especificamente nas Unidades de Cuidados Intensivos (UCI), tem o potencial de melhorar a eficiência dos cuidados de saúde e impulsionar operações de telemedicina com acesso a previsões em tempo real a partir de locais remotos. As operações que exigiam a presença de um profissional de saúde, podem ser feitas à distância, o que, face à recente pandemia da COVID-19, se revelou crucial. Esta dissertação apresenta como solução um sistema de IA capaz de prever valores de PAM. Muitos pacientes nas UCI sofrem de sepse ou choque séptico, e podem ser identificados pela necessidade de vasopressores, como a noradrenalina, para manter a sua PAM acima dos 65 mm Hg. A solução apresentada facilita intervenções antecipadas, minimizando o risco para doentes. O estudo atual analisa vários modelos de machine learning (ML), e treina-os para preverem valores de PAM. Um desafio é ver o desempenho dos diferentes modelos durante o seu treino, e escolher o mais promissor para testar num ambiente controlado. O dataset utilizado para treinar os modelos contém dados idênticos aos gerados por monitores de cabeceira, o que assegura que as previsões se alinhem com cenários realistas. Os dados médicos gerados são processados por um componente separado responsável pela sua limpeza e envio para a aplicação responsável pelo seu carregamento, classificação e utilização do modelo ML. Para aumentar a confiança entre os profissionais de saúde e o sistema, pretende-se também fornecer uma explicação relativa à previsão dada. A solução foi integrada, para validação, com um dos centros de telemedicina implantado pelo projeto europeu ICU4Covid através da sua componente CPS4TIC.Agostinho, CarlosDelgado-Gomes, VascoRUNOliveira, João Pedro Alves2023-07-18T13:28:48Z2023-052023-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/155445enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:38:02Zoai:run.unl.pt:10362/155445Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:56:04.472443Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Adoption of Big Data and AI methods to manage medication administration and intensive care environments |
title |
Adoption of Big Data and AI methods to manage medication administration and intensive care environments |
spellingShingle |
Adoption of Big Data and AI methods to manage medication administration and intensive care environments Oliveira, João Pedro Alves Telemedicine Artificial Intelligence Machine Learning Decision Support Systems Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Adoption of Big Data and AI methods to manage medication administration and intensive care environments |
title_full |
Adoption of Big Data and AI methods to manage medication administration and intensive care environments |
title_fullStr |
Adoption of Big Data and AI methods to manage medication administration and intensive care environments |
title_full_unstemmed |
Adoption of Big Data and AI methods to manage medication administration and intensive care environments |
title_sort |
Adoption of Big Data and AI methods to manage medication administration and intensive care environments |
author |
Oliveira, João Pedro Alves |
author_facet |
Oliveira, João Pedro Alves |
author_role |
author |
dc.contributor.none.fl_str_mv |
Agostinho, Carlos Delgado-Gomes, Vasco RUN |
dc.contributor.author.fl_str_mv |
Oliveira, João Pedro Alves |
dc.subject.por.fl_str_mv |
Telemedicine Artificial Intelligence Machine Learning Decision Support Systems Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Telemedicine Artificial Intelligence Machine Learning Decision Support Systems Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
Artificial Intelligence (AI) has proven to be very helpful in different areas, including the medical field. One important parameter for healthcare professionals’ decision-making process is blood pressure, specifically mean arterial pressure (MAP). The application of AI in medicine, more specifically in Intensive Care Units (ICU) has the potential to improve the efficiency of healthcare and boost telemedicine operations with access to real-time predictions from remote locations. Operations that once required the presence of a healthcare professional, can be done at a distance, which facing the recent COVID-19 pandemic, proved to be crucial. This dissertation presents a solution to develop an AI system capable of accurately predicting MAP values. Many ICU patients suffer from sepsis or septic shock, and they can be identified by the need for vasopressors, such as noradrenaline, to keep their MAP above 65 mm Hg. The presented solution facilitates early interventions, thereby minimising the risk to patients. The current study reviews various machine learning (ML) models, training them to predict MAP values. One of the challenges is to see how the different models behave during their training process and choose the most promising one to test in a controlled environment. The dataset used to train the models contains identical data to the one generated by bedside monitors, which ensures that the models’ predictions align with real-world scenarios. The medical data generated is processed by a separate component that performs data cleaning, after which is directed to the application responsible for loading, classifying the data and utilising the ML model. To increase trust between healthcare professionals and the system to be developed, it is also intended to provide insights into how the results are achieved. The solution was integrated, for validation, with one of the telemedicine hubs deployed by the European project ICU4Covid through its CPS4TIC component. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-18T13:28:48Z 2023-05 2023-05-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/155445 |
url |
http://hdl.handle.net/10362/155445 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138146709929984 |