How Big Data can help football clubs achieve competitive advantage

Detalhes bibliográficos
Autor(a) principal: Henriques, Francisco Jorge Bettencourt
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/25412
Resumo: Integrated in a naturally competitive environment, football clubs will thrive based on the ability to generate competitive advantage. With the industry experiencing technological advancements that permit the dissection of athlete and team performances through modern tracking tools, the data inherent to the activity is increasingly relevant to model the approach towards competition. This thesis sets out to explore how Big Data can be advantageous for football clubs’ performance, by extending the availability of the best talent in the team with enhanced injury preventive mechanisms. It also analyses how the decision-making process of the players can be bettered to extract the most value from every game situation. The connection of secondary data sources, both empirical and theoretical, hints on how football clubs can mobilize specialized resources to deliver a differentiating, performance-enhancing protocol. Despite denser competitive calendars, overall injury rates have declined in elite European football clubs between 2001 and 2017, suggesting that improved training methods helped control the occurrence of preventable injuries. In addition, an increasingly faster game promoted the need of having quick-thinking athletes, able to anticipate in-game scenarios and comply with the tactical demands of competition. With injury linked to poorer performance and decision-making associated with a player’s ability to perform at high-level, the Big Data applications explored in this thesis are reinforced as they have the potential to promote the marginal gains that unbalance a low-scoring sport.
id RCAP_cfab51c238c25eac95f26650bd971f94
oai_identifier_str oai:repositorio.ucp.pt:10400.14/25412
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling How Big Data can help football clubs achieve competitive advantageBig DataCompetitive advantage, football clubs, injury, prevention, noncontact, decision-makingFootball clubsInjuryPreventionNoncontactDecision-makingVantagem competitivaClubes de futebolLesõesPrevençãoNão-contactoTomada de decisãoDomínio/Área Científica::Ciências Sociais::Economia e GestãoIntegrated in a naturally competitive environment, football clubs will thrive based on the ability to generate competitive advantage. With the industry experiencing technological advancements that permit the dissection of athlete and team performances through modern tracking tools, the data inherent to the activity is increasingly relevant to model the approach towards competition. This thesis sets out to explore how Big Data can be advantageous for football clubs’ performance, by extending the availability of the best talent in the team with enhanced injury preventive mechanisms. It also analyses how the decision-making process of the players can be bettered to extract the most value from every game situation. The connection of secondary data sources, both empirical and theoretical, hints on how football clubs can mobilize specialized resources to deliver a differentiating, performance-enhancing protocol. Despite denser competitive calendars, overall injury rates have declined in elite European football clubs between 2001 and 2017, suggesting that improved training methods helped control the occurrence of preventable injuries. In addition, an increasingly faster game promoted the need of having quick-thinking athletes, able to anticipate in-game scenarios and comply with the tactical demands of competition. With injury linked to poorer performance and decision-making associated with a player’s ability to perform at high-level, the Big Data applications explored in this thesis are reinforced as they have the potential to promote the marginal gains that unbalance a low-scoring sport.Integrados num ambiente competitivo, o sucesso dos clubes de futebol assenta na sua capacidade de gerar vantagem competitiva. Com a evolução tecnológica na indústria, que permite dissecar o desempenho do atleta e da equipa com ferramentas de monitorização, os dados inerentes à atividade desportiva ganham preponderância na preparação para a competição. Esta tese explora formas de como a Big Data pode ser vantajosa para o desempenho dos clubes em campo, estendendo a disponibilidade física dos melhores talentos através de mecanismos inovadores na prevenção de lesões. Analisa, igualmente, o potencial formador da tomada de decisão dos atletas, para extrair o maior valor possível de todas as situações de jogo. A ligação de fontes secundárias, empíricas e teóricas, antevê a mobilização de recursos especializados para promover um protocolo diferenciador e potenciador. Apesar da existência de calendários competitivos densos, a taxa global de lesões diminuiu no período compreendido entre 2001 e 2017, sugerindo que a evolução dos métodos de treino contribuiu para controlar a ocorrência de lesões antecipáveis. Ainda, a crescente rapidez do jogo promoveu a necessidade de aliar velocidade à tomada de decisão, promovendo jogadores capazes de antecipar cenários de jogo e assim cumprir com as exigências táticas da competição. Com a ligação das lesões a um decréscimo do desempenho coletivo, e associando-se a tomada de decisão à capacidade do atleta competir a nível de elite, as aplicações de Big Data exploradas nesta tese apresentam o potencial de promover ganhos marginais que podem ser o fator desequilibrador num desporto de baixa pontuação.Flórido, João Luís BaptistaVeritati - Repositório Institucional da Universidade Católica PortuguesaHenriques, Francisco Jorge Bettencourt2018-08-01T13:53:13Z2018-05-1720182018-05-17T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/25412TID:201931346enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:30:48Zoai:repositorio.ucp.pt:10400.14/25412Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:20:15.537683Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv How Big Data can help football clubs achieve competitive advantage
title How Big Data can help football clubs achieve competitive advantage
spellingShingle How Big Data can help football clubs achieve competitive advantage
Henriques, Francisco Jorge Bettencourt
Big Data
Competitive advantage, football clubs, injury, prevention, noncontact, decision-making
Football clubs
Injury
Prevention
Noncontact
Decision-making
Vantagem competitiva
Clubes de futebol
Lesões
Prevenção
Não-contacto
Tomada de decisão
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short How Big Data can help football clubs achieve competitive advantage
title_full How Big Data can help football clubs achieve competitive advantage
title_fullStr How Big Data can help football clubs achieve competitive advantage
title_full_unstemmed How Big Data can help football clubs achieve competitive advantage
title_sort How Big Data can help football clubs achieve competitive advantage
author Henriques, Francisco Jorge Bettencourt
author_facet Henriques, Francisco Jorge Bettencourt
author_role author
dc.contributor.none.fl_str_mv Flórido, João Luís Baptista
Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Henriques, Francisco Jorge Bettencourt
dc.subject.por.fl_str_mv Big Data
Competitive advantage, football clubs, injury, prevention, noncontact, decision-making
Football clubs
Injury
Prevention
Noncontact
Decision-making
Vantagem competitiva
Clubes de futebol
Lesões
Prevenção
Não-contacto
Tomada de decisão
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Big Data
Competitive advantage, football clubs, injury, prevention, noncontact, decision-making
Football clubs
Injury
Prevention
Noncontact
Decision-making
Vantagem competitiva
Clubes de futebol
Lesões
Prevenção
Não-contacto
Tomada de decisão
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description Integrated in a naturally competitive environment, football clubs will thrive based on the ability to generate competitive advantage. With the industry experiencing technological advancements that permit the dissection of athlete and team performances through modern tracking tools, the data inherent to the activity is increasingly relevant to model the approach towards competition. This thesis sets out to explore how Big Data can be advantageous for football clubs’ performance, by extending the availability of the best talent in the team with enhanced injury preventive mechanisms. It also analyses how the decision-making process of the players can be bettered to extract the most value from every game situation. The connection of secondary data sources, both empirical and theoretical, hints on how football clubs can mobilize specialized resources to deliver a differentiating, performance-enhancing protocol. Despite denser competitive calendars, overall injury rates have declined in elite European football clubs between 2001 and 2017, suggesting that improved training methods helped control the occurrence of preventable injuries. In addition, an increasingly faster game promoted the need of having quick-thinking athletes, able to anticipate in-game scenarios and comply with the tactical demands of competition. With injury linked to poorer performance and decision-making associated with a player’s ability to perform at high-level, the Big Data applications explored in this thesis are reinforced as they have the potential to promote the marginal gains that unbalance a low-scoring sport.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-01T13:53:13Z
2018-05-17
2018
2018-05-17T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/25412
TID:201931346
url http://hdl.handle.net/10400.14/25412
identifier_str_mv TID:201931346
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131899834138624