How Big Data can help football clubs achieve competitive advantage
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/25412 |
Resumo: | Integrated in a naturally competitive environment, football clubs will thrive based on the ability to generate competitive advantage. With the industry experiencing technological advancements that permit the dissection of athlete and team performances through modern tracking tools, the data inherent to the activity is increasingly relevant to model the approach towards competition. This thesis sets out to explore how Big Data can be advantageous for football clubs’ performance, by extending the availability of the best talent in the team with enhanced injury preventive mechanisms. It also analyses how the decision-making process of the players can be bettered to extract the most value from every game situation. The connection of secondary data sources, both empirical and theoretical, hints on how football clubs can mobilize specialized resources to deliver a differentiating, performance-enhancing protocol. Despite denser competitive calendars, overall injury rates have declined in elite European football clubs between 2001 and 2017, suggesting that improved training methods helped control the occurrence of preventable injuries. In addition, an increasingly faster game promoted the need of having quick-thinking athletes, able to anticipate in-game scenarios and comply with the tactical demands of competition. With injury linked to poorer performance and decision-making associated with a player’s ability to perform at high-level, the Big Data applications explored in this thesis are reinforced as they have the potential to promote the marginal gains that unbalance a low-scoring sport. |
id |
RCAP_cfab51c238c25eac95f26650bd971f94 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/25412 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
How Big Data can help football clubs achieve competitive advantageBig DataCompetitive advantage, football clubs, injury, prevention, noncontact, decision-makingFootball clubsInjuryPreventionNoncontactDecision-makingVantagem competitivaClubes de futebolLesõesPrevençãoNão-contactoTomada de decisãoDomínio/Área Científica::Ciências Sociais::Economia e GestãoIntegrated in a naturally competitive environment, football clubs will thrive based on the ability to generate competitive advantage. With the industry experiencing technological advancements that permit the dissection of athlete and team performances through modern tracking tools, the data inherent to the activity is increasingly relevant to model the approach towards competition. This thesis sets out to explore how Big Data can be advantageous for football clubs’ performance, by extending the availability of the best talent in the team with enhanced injury preventive mechanisms. It also analyses how the decision-making process of the players can be bettered to extract the most value from every game situation. The connection of secondary data sources, both empirical and theoretical, hints on how football clubs can mobilize specialized resources to deliver a differentiating, performance-enhancing protocol. Despite denser competitive calendars, overall injury rates have declined in elite European football clubs between 2001 and 2017, suggesting that improved training methods helped control the occurrence of preventable injuries. In addition, an increasingly faster game promoted the need of having quick-thinking athletes, able to anticipate in-game scenarios and comply with the tactical demands of competition. With injury linked to poorer performance and decision-making associated with a player’s ability to perform at high-level, the Big Data applications explored in this thesis are reinforced as they have the potential to promote the marginal gains that unbalance a low-scoring sport.Integrados num ambiente competitivo, o sucesso dos clubes de futebol assenta na sua capacidade de gerar vantagem competitiva. Com a evolução tecnológica na indústria, que permite dissecar o desempenho do atleta e da equipa com ferramentas de monitorização, os dados inerentes à atividade desportiva ganham preponderância na preparação para a competição. Esta tese explora formas de como a Big Data pode ser vantajosa para o desempenho dos clubes em campo, estendendo a disponibilidade física dos melhores talentos através de mecanismos inovadores na prevenção de lesões. Analisa, igualmente, o potencial formador da tomada de decisão dos atletas, para extrair o maior valor possível de todas as situações de jogo. A ligação de fontes secundárias, empíricas e teóricas, antevê a mobilização de recursos especializados para promover um protocolo diferenciador e potenciador. Apesar da existência de calendários competitivos densos, a taxa global de lesões diminuiu no período compreendido entre 2001 e 2017, sugerindo que a evolução dos métodos de treino contribuiu para controlar a ocorrência de lesões antecipáveis. Ainda, a crescente rapidez do jogo promoveu a necessidade de aliar velocidade à tomada de decisão, promovendo jogadores capazes de antecipar cenários de jogo e assim cumprir com as exigências táticas da competição. Com a ligação das lesões a um decréscimo do desempenho coletivo, e associando-se a tomada de decisão à capacidade do atleta competir a nível de elite, as aplicações de Big Data exploradas nesta tese apresentam o potencial de promover ganhos marginais que podem ser o fator desequilibrador num desporto de baixa pontuação.Flórido, João Luís BaptistaVeritati - Repositório Institucional da Universidade Católica PortuguesaHenriques, Francisco Jorge Bettencourt2018-08-01T13:53:13Z2018-05-1720182018-05-17T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/25412TID:201931346enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:30:48Zoai:repositorio.ucp.pt:10400.14/25412Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:20:15.537683Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
How Big Data can help football clubs achieve competitive advantage |
title |
How Big Data can help football clubs achieve competitive advantage |
spellingShingle |
How Big Data can help football clubs achieve competitive advantage Henriques, Francisco Jorge Bettencourt Big Data Competitive advantage, football clubs, injury, prevention, noncontact, decision-making Football clubs Injury Prevention Noncontact Decision-making Vantagem competitiva Clubes de futebol Lesões Prevenção Não-contacto Tomada de decisão Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
How Big Data can help football clubs achieve competitive advantage |
title_full |
How Big Data can help football clubs achieve competitive advantage |
title_fullStr |
How Big Data can help football clubs achieve competitive advantage |
title_full_unstemmed |
How Big Data can help football clubs achieve competitive advantage |
title_sort |
How Big Data can help football clubs achieve competitive advantage |
author |
Henriques, Francisco Jorge Bettencourt |
author_facet |
Henriques, Francisco Jorge Bettencourt |
author_role |
author |
dc.contributor.none.fl_str_mv |
Flórido, João Luís Baptista Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Henriques, Francisco Jorge Bettencourt |
dc.subject.por.fl_str_mv |
Big Data Competitive advantage, football clubs, injury, prevention, noncontact, decision-making Football clubs Injury Prevention Noncontact Decision-making Vantagem competitiva Clubes de futebol Lesões Prevenção Não-contacto Tomada de decisão Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Big Data Competitive advantage, football clubs, injury, prevention, noncontact, decision-making Football clubs Injury Prevention Noncontact Decision-making Vantagem competitiva Clubes de futebol Lesões Prevenção Não-contacto Tomada de decisão Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
Integrated in a naturally competitive environment, football clubs will thrive based on the ability to generate competitive advantage. With the industry experiencing technological advancements that permit the dissection of athlete and team performances through modern tracking tools, the data inherent to the activity is increasingly relevant to model the approach towards competition. This thesis sets out to explore how Big Data can be advantageous for football clubs’ performance, by extending the availability of the best talent in the team with enhanced injury preventive mechanisms. It also analyses how the decision-making process of the players can be bettered to extract the most value from every game situation. The connection of secondary data sources, both empirical and theoretical, hints on how football clubs can mobilize specialized resources to deliver a differentiating, performance-enhancing protocol. Despite denser competitive calendars, overall injury rates have declined in elite European football clubs between 2001 and 2017, suggesting that improved training methods helped control the occurrence of preventable injuries. In addition, an increasingly faster game promoted the need of having quick-thinking athletes, able to anticipate in-game scenarios and comply with the tactical demands of competition. With injury linked to poorer performance and decision-making associated with a player’s ability to perform at high-level, the Big Data applications explored in this thesis are reinforced as they have the potential to promote the marginal gains that unbalance a low-scoring sport. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-01T13:53:13Z 2018-05-17 2018 2018-05-17T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/25412 TID:201931346 |
url |
http://hdl.handle.net/10400.14/25412 |
identifier_str_mv |
TID:201931346 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131899834138624 |