Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/8398 |
Resumo: | Dynamic panel data (DPD) models are usually estimated by the generalized method of moments. However, it is well documented in the DPD literature that this estimator suffers from considerable finite sample bias, especially when the time series is highly persistent. Application of the asymptotically equivalent continuous updating method eliminates this problem but the resultant estimator exhibits too much variability in small samples. Thus, other estimation methods are considered in this paper. Focussing in the AR(1) case with no exogenous regressors, we analyze several alternative ways of correcting the bias of the traditional estimators utilized in non-dynamic settings, showing how to construct feasible bias-adjusted ordinary least squares, within-groups, and first-differences estimators. We obtain very promising results for some of these estimators in a Monte Carlo simulation study involving data with the qualities normally encountered by both microeconomists and macroeconomists. |
id |
RCAP_d01e300097fab5106234d0a89f12dc5a |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/8398 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data modelsdynamic panel databias-correctionswithin-groupsfirst-diferencesGMMcontinuous-updatingDynamic panel data (DPD) models are usually estimated by the generalized method of moments. However, it is well documented in the DPD literature that this estimator suffers from considerable finite sample bias, especially when the time series is highly persistent. Application of the asymptotically equivalent continuous updating method eliminates this problem but the resultant estimator exhibits too much variability in small samples. Thus, other estimation methods are considered in this paper. Focussing in the AR(1) case with no exogenous regressors, we analyze several alternative ways of correcting the bias of the traditional estimators utilized in non-dynamic settings, showing how to construct feasible bias-adjusted ordinary least squares, within-groups, and first-differences estimators. We obtain very promising results for some of these estimators in a Monte Carlo simulation study involving data with the qualities normally encountered by both microeconomists and macroeconomists.2013-04-03T11:28:51Z2013-04-032003-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/8398http://hdl.handle.net/10174/8398engRamalho, J.J.S. (2003), Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models, Documento de Trabalho nº 2003/10, Universidade de Évora, Departamento de Economia.22jsr@uevora.ptC13, C2310_2003Department of Economics, University of ÉvoraRamalho, Joaquiminfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:49:20Zoai:dspace.uevora.pt:10174/8398Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:02:39.627413Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models |
title |
Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models |
spellingShingle |
Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models Ramalho, Joaquim dynamic panel data bias-corrections within-groups first-diferences GMM continuous-updating |
title_short |
Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models |
title_full |
Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models |
title_fullStr |
Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models |
title_full_unstemmed |
Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models |
title_sort |
Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models |
author |
Ramalho, Joaquim |
author_facet |
Ramalho, Joaquim |
author_role |
author |
dc.contributor.author.fl_str_mv |
Ramalho, Joaquim |
dc.subject.por.fl_str_mv |
dynamic panel data bias-corrections within-groups first-diferences GMM continuous-updating |
topic |
dynamic panel data bias-corrections within-groups first-diferences GMM continuous-updating |
description |
Dynamic panel data (DPD) models are usually estimated by the generalized method of moments. However, it is well documented in the DPD literature that this estimator suffers from considerable finite sample bias, especially when the time series is highly persistent. Application of the asymptotically equivalent continuous updating method eliminates this problem but the resultant estimator exhibits too much variability in small samples. Thus, other estimation methods are considered in this paper. Focussing in the AR(1) case with no exogenous regressors, we analyze several alternative ways of correcting the bias of the traditional estimators utilized in non-dynamic settings, showing how to construct feasible bias-adjusted ordinary least squares, within-groups, and first-differences estimators. We obtain very promising results for some of these estimators in a Monte Carlo simulation study involving data with the qualities normally encountered by both microeconomists and macroeconomists. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-01-01T00:00:00Z 2013-04-03T11:28:51Z 2013-04-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/8398 http://hdl.handle.net/10174/8398 |
url |
http://hdl.handle.net/10174/8398 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ramalho, J.J.S. (2003), Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models, Documento de Trabalho nº 2003/10, Universidade de Évora, Departamento de Economia. 22 jsr@uevora.pt C13, C23 10_2003 Department of Economics, University of Évora |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136510607360000 |