Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models

Detalhes bibliográficos
Autor(a) principal: Ramalho, Joaquim
Data de Publicação: 2003
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/8398
Resumo: Dynamic panel data (DPD) models are usually estimated by the generalized method of moments. However, it is well documented in the DPD literature that this estimator suffers from considerable finite sample bias, especially when the time series is highly persistent. Application of the asymptotically equivalent continuous updating method eliminates this problem but the resultant estimator exhibits too much variability in small samples. Thus, other estimation methods are considered in this paper. Focussing in the AR(1) case with no exogenous regressors, we analyze several alternative ways of correcting the bias of the traditional estimators utilized in non-dynamic settings, showing how to construct feasible bias-adjusted ordinary least squares, within-groups, and first-differences estimators. We obtain very promising results for some of these estimators in a Monte Carlo simulation study involving data with the qualities normally encountered by both microeconomists and macroeconomists.
id RCAP_d01e300097fab5106234d0a89f12dc5a
oai_identifier_str oai:dspace.uevora.pt:10174/8398
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data modelsdynamic panel databias-correctionswithin-groupsfirst-diferencesGMMcontinuous-updatingDynamic panel data (DPD) models are usually estimated by the generalized method of moments. However, it is well documented in the DPD literature that this estimator suffers from considerable finite sample bias, especially when the time series is highly persistent. Application of the asymptotically equivalent continuous updating method eliminates this problem but the resultant estimator exhibits too much variability in small samples. Thus, other estimation methods are considered in this paper. Focussing in the AR(1) case with no exogenous regressors, we analyze several alternative ways of correcting the bias of the traditional estimators utilized in non-dynamic settings, showing how to construct feasible bias-adjusted ordinary least squares, within-groups, and first-differences estimators. We obtain very promising results for some of these estimators in a Monte Carlo simulation study involving data with the qualities normally encountered by both microeconomists and macroeconomists.2013-04-03T11:28:51Z2013-04-032003-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/8398http://hdl.handle.net/10174/8398engRamalho, J.J.S. (2003), Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models, Documento de Trabalho nº 2003/10, Universidade de Évora, Departamento de Economia.22jsr@uevora.ptC13, C2310_2003Department of Economics, University of ÉvoraRamalho, Joaquiminfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:49:20Zoai:dspace.uevora.pt:10174/8398Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:02:39.627413Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models
title Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models
spellingShingle Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models
Ramalho, Joaquim
dynamic panel data
bias-corrections
within-groups
first-diferences
GMM
continuous-updating
title_short Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models
title_full Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models
title_fullStr Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models
title_full_unstemmed Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models
title_sort Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models
author Ramalho, Joaquim
author_facet Ramalho, Joaquim
author_role author
dc.contributor.author.fl_str_mv Ramalho, Joaquim
dc.subject.por.fl_str_mv dynamic panel data
bias-corrections
within-groups
first-diferences
GMM
continuous-updating
topic dynamic panel data
bias-corrections
within-groups
first-diferences
GMM
continuous-updating
description Dynamic panel data (DPD) models are usually estimated by the generalized method of moments. However, it is well documented in the DPD literature that this estimator suffers from considerable finite sample bias, especially when the time series is highly persistent. Application of the asymptotically equivalent continuous updating method eliminates this problem but the resultant estimator exhibits too much variability in small samples. Thus, other estimation methods are considered in this paper. Focussing in the AR(1) case with no exogenous regressors, we analyze several alternative ways of correcting the bias of the traditional estimators utilized in non-dynamic settings, showing how to construct feasible bias-adjusted ordinary least squares, within-groups, and first-differences estimators. We obtain very promising results for some of these estimators in a Monte Carlo simulation study involving data with the qualities normally encountered by both microeconomists and macroeconomists.
publishDate 2003
dc.date.none.fl_str_mv 2003-01-01T00:00:00Z
2013-04-03T11:28:51Z
2013-04-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/8398
http://hdl.handle.net/10174/8398
url http://hdl.handle.net/10174/8398
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ramalho, J.J.S. (2003), Feasible bias-corrected OLS, within-groups, and first-differences estimators for typical micro and macro AR(1) panel data models, Documento de Trabalho nº 2003/10, Universidade de Évora, Departamento de Economia.
22
jsr@uevora.pt
C13, C23
10_2003
Department of Economics, University of Évora
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136510607360000